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1 Simulations
Supplementary Figures S1 and S2 highlight the different impact that changes
in the drift equilibrium point m3 and changes in the prior expectation about
environmental volatility µ

(0)
3 have on belief trajectories at different levels of

the inferential hierarchy and on simulated behavior. For completeness, we
also included simulations illustrating the effects of changing the coupling
between hierarchical levels κ2 (Supplementary Figure S3) and changing the
evolution rate ω2 (Supplementary Figure S4).

1.1 Simulating changes in the equilibrium point

Figure S1: Simulations showing the effect of changing the equilibrium point m3. Shown
are trajectories of beliefs about the volatility the adviser’s intentions µ3 (upper panel), beliefs
about the adviser’s fidelity µ2 (middle panel) and about the advice accuracy s(µ2). Black dots
indicate inputs (1: helpful advice, 0: misleading advice) and colored dots simulated responses
(1: going with the advice, 0: going against the advice). Increasing m3 (colder colours) results
in larger precision-weighted prediction errors leading to stronger belief updates across all levels
of the hierarchy that increase over the course of the session. The effect on behavior depends on
the input structure. When agents are exposed to volatile changes between very helpful and very
misleading advice (trials 68-119), higher m3 leads agents to detect changes more rapidly (see black
arrows labelled A). However, high values of m3 also increase susceptibility to noisy inputs (e.g.,
trials 120-136; see black arrow labelled B). For the simulations, all other parameter values were
fixed to the values of an ideal observer given the input.
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1.2 Simulating changes in the prior expectation about envi-
ronmental volatility

Figure S2: Simulations showing the effect of changing the prior expectation about
environmental volatility µ

(0)
3 . Shown are trajectories of beliefs about the volatility the adviser’s

intentions µ3 (upper panel), beliefs about the adviser’s fidelity µ2 (middle panel) and about the
advice accuracy s(µ2). Black dots indicate inputs (1: helpful advice, 0: misleading advice) and
colored dots simulated responses (1: going with the advice, 0: going against the advice). Increasing
µ
(0)
3 (colder colours) results in changes primarily in the first trials of the session and changes do

not propagate strongly to lower levels.
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1.3 Simulating changes in the coupling strength

Figure S3: Simulations showing the effect of changing the coupling strength κ2. Shown
are trajectories of beliefs about the volatility the adviser’s intentions µ3 (upper panel), beliefs
about the adviser’s fidelity µ2 (middle panel) and about the advice accuracy s(µ2). Black dots
indicate inputs (1: helpful advice, 0: misleading advice) and colored dots simulated responses (1:
going with the advice, 0: going against the advice).
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1.4 Simulating changes in the evolution rate

Figure S4: Simulations showing the effect of changing the evolution rate ω2. Shown are
trajectories of beliefs about the volatility the adviser’s intentions µ3 (upper panel), beliefs about
the adviser’s fidelity µ2 (middle panel) and about the advice accuracy s(µ2). Black dots indicate
inputs (1: helpful advice, 0: misleading advice) and colored dots simulated responses (1: going
with the advice, 0: going against the advice).
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2 Supplementary Results
2.1 Behaviour between groups across experimental blocks
To provide a more detailed description of how the behaviour differed across
groups we analysed behaviour across experimental blocks (each contain-
ing 17 trials with different advice accuracy; Figure 1B, main manuscript).
We identified a significant group-by-task-block interaction on the frequency
of advice-taking (F = 3.419, p < 0.001). To unpack this effect we re-
peated the analysis with three two-group models. We found significant
group-by-task-block interactions when comparing HC vs FEP (F = 5.416,
puncorr < 0.001, p < 0.001, Bonferroni-corrected for the number of com-
parisons, i.e. n = 3) and FEP vs CHR-P (F = 2.616, puncorr = 0.013,
p = 0.038), but the comparison between HC vs CHR-P did not survive
Bonferroni correction (F = 2.241, puncorr = 0.032, p = 0.095). Post hoc
marginal contrasts revealed group differences in blocks 2 (HC vs FEP:
puncorr = 0.039, p = 0.925), block 6 (HC vs FEP: puncorr < 0.001, p = 0.004;
CHR-P vs FEP: puncorr = 0.039, p = 0.929) and block 8 (HC vs CHR-P,
puncorr = 0.042, p = 1.000). However, only the effect of HC vs FEP in
block 6 survived Bonferroni correction for 3 (#groups) x 8 (#blocks) = 24
comparisons, suggesting that FEP were adhering more to the advice, specif-
ically in a block in which the adviser is truly misleading. However, note
that FEP were not showing differences in helpful blocks (e.g., blocks 5 and
7), which suggests that this behaviour may not simply reflect giving up in
volatile environments. Interestingly, similar findings have been reported in
individuals with borderline personality disorder (Henco et al., 2020). None
of the covariates significantly impacted advice taking.

The group-by-task-block interaction remained significant after including
antipsychotic and antidepressant dose as covariates (F = 3.515, p < 0.001).
Neither the effect of antipsychotic dose (F = 0.447, p = 0.507) or antide-
pressant dose (F = 0.004, p = 0.950) were significant. Unpacking this model
again revealed significant group-by-task-block interactions when comparing
HC vs FEP (F = 5.416, puncorr < 0.001, p < 0.001) and CHR-P vs FEP
(F = 3.282, puncorr = 0.002, p = 0.007), but not when comparing HC vs
CHR-P (F = 1.452, puncorr = 0.185, p = 1.00). The group-by-task-phase
interaction effect in HC vs CHR-P did not survive Bonferroni correction
(F = 5.154, puncorr = 0.030, p = 0.556). Post hoc marginal contrasts re-
vealed group differences in block 6 (HC vs FEP: puncorr < 0.001, p = 0.005;
CHR-P vs FEP: puncorr = 0.014, p = 0.348; Figure SS5) and block 8 (HC vs
CHR-P, puncorr = 0.038, p = 0.904). However, only the effect of HC vs FEP
in block 6 survived Bonferroni correction for 3 (#groups) x 8 (#blocks) =
24 comparisons.
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Figure S5: Behaviour between groups and across experimental block. The black line
indicates the average advice accuracy of each block. Horizontal lines and squares in box plots
represent median and mean, respectively. Boxes span the 25th to 75th quartiles and whiskers
extend from hinges to the largest and smallest value that lies within 1.5× interquartile range.
Asterisks indicate significance of marginal tests at: ** p < 0.01, using Bonferroni correction,
adjusted for 3 (#groups) x 8 (#blocks) = 24 comparisons, or at + p < 0.05 uncorrected.

2.2 Model comparison with simpler models
To test whether simpler models were sufficient to explain participants’ be-
haviour in this social learning task, we conducted a supplementary analysis
in which we added two simpler models to the model space, a Rescorla-
Wagner model and a non-hierarchical two-level HGF. The priors for these
models are reported in Table SS1. Model comparison favoured the models
reported in the main manuscript (Figure SS6) in line with previous model
comparisons (Cole et al., 2020; Diaconescu et al., 2014, 2017, 2020)).

Rescorla-Wagner
Parameter Model Component Prior Mean Prior Variance Transformation Bounds Fixed? Based on

α Perceptual Model 0.25a 1a,b logit [0, 1] -
v(0) Perceptual Model 0.5a,b 1a,b logit [0, 1] -
ν Response Model 48a,b 1a,b log [0, +∞) -

2-level HGF
Parameter Model Component Prior Mean Prior Variance Transformation Bounds Fixed? Based on

ω2 Perceptual Model -2b,c 4c - (−∞, +∞) -
κ2 Perceptual Model 0a 0a logit [0, 1] Yes a

σ
(0)
2 Perceptual Model 0a,b 0a - (−∞, +∞) Yes a

σ
(0)
2 Perceptual Model 1a,b 0a log [0, +∞) Yes a

ν Response Model 48a,b,c 1a,b,c log [0, +∞) -

Table S1: Model parameter overview for simpler models. Prior parameter values were
chosen based on the references indicated next to prior means and variances. aCole et al. (2020).
aCole et al. (2020). bDiaconescu et al. (2014). cHauke et al. (2018).
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Figure S6: Bayesian model selection results with simpler models. A Protected exceedance
probabilities for within-group random-effects Bayesian model selection (Stephan et al., 2009;
Rigoux et al., 2014) to arbitrate between Hypothesis I (HI; standard 3-level HGF) and Hy-
pothesis II (HII; mean-reverting HGF with drift at 3rd level in line with an altered perception of
volatility). Two corresponding control models were included (CI and CII), for which the percep-
tual model parameters were fixed. Additionally, two simpler models, a Rescorla-Wagner model
(RW) and a 2-level HGF (2lHGF), were included in this extended comparison. Model selection
was performed separately in healthy controls (HC), individuals at clinical high risk for psychosis
(CHR-P), or first-episode psychosis patients (FEP). The dashed line indicates 95% exceedance
probability. B Model attributions for each participant.

2.3 Fixing non-recoverable parameters to test for knock-on
effects

To assess whether non-recoverable parameters led to knock-on effects on
other parameters, we repeated the analyses presented in the main manuscript,
while fixing parameters that could not be recovered in the main manuscript
to their priors (i.e., µ(0)

2 = 0, µ(0)
3 = 1, and κ2 = 0.5). We found that the

main result (Bayesian model selection) was comparable when fixing non-
recoverable parameters (Figure SS7).

When repeating the secondary analysis investigating parameter group
effects on m3 to assess whether psychosis was associated with perceiving
the environment as increasingly volatile or stable, we again found an ef-
fect on m3 (η2 = 0.111, puncorr = 0.048; Figure SS8). As in the main
manuscript, this effect did not survive Bonferroni correction for the number
of free parameters (p = 0.191). Pairwise comparison revealed higher m3 in
CHR vs HC (puncorr = 0.021) and a trend-effect of higher m3 FEP vs HC
(puncorr = 0.060). Both did not survive Bonferroni correction for n = 3
groups (p = 0.063 and p = 0179).
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Lastly, we found trend correlations between m3 and PANSS positive
symptoms (τ = 0.185, puncorr = 0.058 and p = 0.175, adjusted for n =
3 PANSS scales; Figure SS8) and between m3 and PCL frequency scores
(τ = 0.163, puncorr = 0.084 and p = 0.253, adjusted for n = 3 PCL scales).
As stated in the main manuscript, although these correlations were in the
expected direction, they should be assessed in a larger sample as our current
results are inconclusive.

Figure S7: Bayesian model selection results with fixed non-recoverable parameters.
A Protected exceedance probabilities for within-group random-effects Bayesian model selection
(Stephan et al., 2009; Rigoux et al., 2014) to arbitrate between Hypothesis I (HI; standard 3-level
HGF) and Hypothesis II (HII; mean-reverting HGF with drift at 3rd level in line with an altered
perception of volatility). Two corresponding control models were included (CI and CII), for which
the perceptual model parameters were fixed. Model selection was performed separately in healthy
controls (HC), individuals at clinical high risk for psychosis (CHR-P), or first-episode psychosis
patients (FEP). The dashed line indicates 95% exceedance probability. B Model attributions for
each participant.
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Figure S8: Parameter group effects with fixed non-recoverable parameter. A Parameter
effect for drift equilibrium point m3. B Correlation between model parameters and either Positive
and Negative Syndrome Scale (Kay et al., 1987) (PANSS) or Paranoia Checklist (Freeman et al.,
2005) (PCL). Note, that raw scores are displayed for illustration purposes only. Statistical anal-
yses were conducted using nonparametric Kendall rank correlations. Displayed regression lines
were computed using a linear model based on the raw scores. P: Positive symptoms. Boxes span
the 25th to 75th quartiles and whiskers extend from hinges to the largest and smallest value that
lies within 1.5× interquartile range.
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3 Reproducibility
To ensure reproducibility of our results, we report the results excluding
one participant who did not consent to make their data available for reuse
and was excluded from the public repository. Our entire analysis pipeline
with instructions can be found here: https://github.com/daniel-hauke/
compi_ioio_phase. The data can be downloaded here: https://osf.io/
6rdjc/.

The models were implemented in Matlab (version: 2017a; https:
//mathworks.com) using the HGF toolbox (version: 3.0), which
is made available as open-source code as part of the TAPAS
software collection (https://github.com/translationalneuromodeling/
tapas/releases/tag/v3.0.0; Frässle et al. (2021)) and the VBA toolbox
(Daunizeau et al., 2014) (https://mbb-team.github.io/VBA-toolbox/;
Daunizeau et al. (2014)). Statistical analyses were run in R (version:
4.04; https://www.r-project.org/) using R-Studio (version: 1.4.1106;
https://www.rstudio.com/).

3.1 Behavioural results without one participant
Excluding the participant who did not consent to reusing their data, we still
identified a significant group-by-task-phase interaction on the frequency of
advice-taking (F = 4.857, p = 0.012). To unpack this effect we repeated
the analysis with three two-group models. We found significant group-by-
task-phase interactions when comparing HC vs FEP (F = 7.128, puncorr =
0.012, p = 0.035 Bonferroni-corrected for the number of comparisons, i.e.
n = 3) and HC vs CHR-P (F = 7.745, puncorr = 0.009, p = 0.026), but
not when comparing CHR-P vs FEP (F = 0.001, puncorr = 0.977, p =
1.000), suggesting that both CHR-P and FEP showed reduced flexibility to
take environmental volatility into account as the difference between stable
and volatile phase was reduced compared to HC. None of the covariates
significantly impacted advice taking.

The group-by-task-phase interaction remained significant after including
antipsychotic and antidepressant dose as covariates (F = 4.296, p = 0.019).
Neither the effect of antipsychotic dose (F = 0.240, p = 0.627) or antide-
pressant dose (F = 0.096, p = 0.759) were significant. Unpacking this model
again revealed significant group-by-task-phase interactions when comparing
HC vs FEP (F = 7.128, puncorr = 0.012, p = 0.035), but not when compar-
ing CHR-P vs FEP (F = 0.322, puncorr = 0.574, p = 1.00). The group-by-
task-phase interaction effect for HC vs CHR-P did not survive Bonferroni
correction (F = 5.154, puncorr = 0.030, p = 0.089).
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3.2 Modelling results without one participant
3.2.1 Bayesian model selection without one participant

We also repeated the Bayesian model selection including participants from
all groups first. The results were again inconclusive (ϕ = 59.92%, f =
51.22% in favour of Hypothesis II) possibly suggesting that different groups
were best explained by different models (i.e., different computational mech-
anisms). To assess this possibility, we repeated the model selection for
each group separately. In HC, the winning model was the standard 3-level
HGF (Hypothesis I; ϕ = 96.63%, f = 95.93%). Conversely, in FEP the
mean-reverting HGF that included a drift at the third level was selected
(Hypothesis II; ϕ = 99.89%, f = 95.69%). For CHR-P, we observed a
more heterogeneous results: While the mean-reverting model was favoured
(Hypothesis II; ϕ = 84.50%, f = 60.24%), there was also evidence for the
standard HGF, albeit to a much lesser extent (Hypothesis I; ϕ = 14.41%,
f = 37.19%). Further inspection of the model attributions for all individ-
ual participants revealed an interesting pattern. All HC were attributed
to the standard HGF with over 97% probability, whereas FEP were at-
tributed to the mean-reverting model with over 99%. Interestingly, model
attributions for CHR-P were more heterogeneous ranging from 0 to 100%
probability, suggesting that some individuals were better explained by the
standard HGF, but others by the mean-reverting model.

3.2.2 Parameter group effects without one participant

In the reduced sample, the drift equilibrium point m3 significantly differed
across the groups (η2 = 0.130, puncorr = 0.030). Post hoc tests revealed
that m3 was increased in FEP compared to HC suggesting that FEP per-
ceived the intentions of the adviser as increasingly more volatile over time
(η2 = 0.191, p = 0.029, Bonferroni-corrected for the number of compar-
isons across groups, i.e., n = 3). We also performed an exploratory analysis
including all other free model parameters. This analysis revealed an addi-
tional effect on coupling strength κ2 (η2 = 0.157, puncorr = 0.014), which
was driven by reduced coupling strength between the second and third level
of the perceptual hierarchy in FEP compared to HC (η2 = 0.245, p = 0.010,
Bonferroni-corrected for the number of comparisons across groups, i.e.,
n = 3). However, neither the effect on m3 nor κ2 survived Bonferroni cor-
rection for the number of parameters, i.e. n = 7 (p = 0.207 and p = 0.100,
respectively), possibly due to a lack of power.

3.2.3 Symptom-parameter correlations without one participant

Repeating the correlations on the reduced sample yielded a positive trend
correlation between m3 and PANSS positive symptoms (τ = 0.175, puncorr =
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0.077, p = 0.460 Bonferroni-adjusted for 2 (#parameters) x 3 (#PANSS
subscales) = 6 comparisons). As in the main manuscript, there were negative
correlations between κ2 and PANSS negative and general symptoms (τ =
−0.265, puncorr = 0.008, p = 0.052 and τ = −0.24, puncorr = 0.013, p =
0.077 respectively), which did not survive Bonferroni correction.

Similarly, there was only a trend correlation when excluding this subject
between m3 and the PCL frequency subscale (τ = 0.170, puncorr = 0.079,
p = 0.475 Bonferroni-adjusted for 2 (#parameters) x 3 (#PCL subscales)
= 6 comparisons). Note, that the participant that did not consent to reuse
of their data scored high on positive symptoms which likely contributes to
the changes in the correlations compared to the full sample. However, as
we pointed out in the main manuscript these correlation results should be
taken as preliminary due to the small sample size of this study.
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