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ABSTRACT
Paranoid delusions or unfounded beliefs that others intend to deliberately cause harm 
are a frequent and burdensome symptom in early psychosis, but their emergence and 
consolidation still remains opaque. Recent theories suggest that overly precise prediction 
errors lead to an unstable model of the world providing a breeding ground for delusions. 
Here, we employ a Bayesian approach to test for such an unstable model of the world and 
investigate the computational mechanisms underlying emerging paranoia.

We modelled behaviour of 18 first-episode psychosis patients (FEP), 19 individuals at clinical 
high risk for psychosis (CHR-P), and 19 healthy controls (HC) during an advice-taking task 
designed to probe learning about others’ changing intentions. We formulated competing 
hypotheses comparing the standard Hierarchical Gaussian Filter (HGF), a Bayesian belief 
updating scheme, with a mean-reverting HGF to model an altered perception of volatility.

There was a significant group-by-volatility interaction on advice-taking suggesting 
that CHR-P and FEP displayed reduced adaptability to environmental volatility. Model 
comparison favored the standard HGF in HC, but the mean-reverting HGF in CHR-P and 
FEP in line with perceiving increased volatility, although model attributions in CHR-P were 
heterogeneous. We observed correlations between perceiving increased volatility and 
positive symptoms generally as well as with frequency of paranoid delusions specifically.

Our results suggest that FEP are characterised by a different computational mechanism 
– perceiving the environment as increasingly volatile – in line with Bayesian accounts of 
psychosis. This approach may prove useful to investigate heterogeneity in CHR-P and 
identify vulnerability for transition to psychosis.
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1 INTRODUCTION
Paranoid delusions are commonly defined as unfounded beliefs that others intend to deliberately 
cause harm (Freeman and Garety, 2000) and they are a frequent symptom in early psychosis 
occurring in about 50–70% of first-episode psychosis patients (FEP) (Freeman, 2007; Freeman and 
Garety, 2014; Sartorius et al., 1986). While paranoid delusions are a key symptom of schizophrenia, 
they are also present in the general population (Freeman et al., 2005; Wellstein et al., 2020) and are 
frequently reported in other psychotic disorders and affective disorders, such as bipolar disorder 
and depression (Appelbaum et al., 1999). Importantly, paranoid delusions are a heavy burden for 
those afflicted by them as they are associated with more frequent suicidal ideation in the general 
population (Freeman et al., 2011) and higher suicide risk in patients (Fenton et al., 1997; Saarinen 
et al., 1999).

Despite an urgent clinical need to address these symptoms, the emergence and consolidation 
of paranoid delusions remain a subject of debate. Recent cognitive theories suggest that 
‘aberrant salience’ caused by overly precise prediction errors (PEs) – possibly mediated through 
dopaminergic signaling – lead to an uncertain model of the world providing a breeding ground 
for delusions to form (Kapur 2003; Howes and Kapur, 2009; Corlett et al., 2010; Winton-Brown 
et al., 2014; Diaconescu et al., 2019). It has been proposed that these overly precise PEs could 
then be explained away by adopting more abstract higher order beliefs that may take the form of 
delusions (Kapur, 2003; Corlett et al., 2010; Sterzer et al., 2018).

Here, we pursue a Bayesian approach that enables us to formalize the concept of ‘aberrant 
salience’. We will first discuss ‘aberrant salience’ in a non-hierarchical framework and then proceed 
to a hierarchical framework using a hierarchical Bayesian model of learning (Mathys et al., 2011, 
2014) to derive competing computational mechanisms that are tested in this study.

When adopting a Bayesian framework, ‘aberrant salience’ can be understood as reduced 
uncertainty (i.e., variance) or increased precision (inverse of uncertainty) that up-weighs incoming 
sensory information (Stephan et al., 2006; Fletcher and Frith, 2009; Corlett et al., 2009; 2010; 
Adams et al., 2013; Diaconescu et al., 2019). In a non-hierarchical model, ‘aberrant salience’ would 
be expressed in relatively increased precision associated with the likelihood or reduced precision 
associated with the prior distribution (e.g., see Sterzer et al. (2018)).

However, for example Fletcher and Frith (2009) have argued that beliefs may better be 
conceptualised in a hierarchical manner. Assuming a hierarchical structure of beliefs where the 
lower level corresponds to beliefs about sensory information and the higher level to beliefs about 
the volatility of the environment and further assuming that beliefs can be expressed as Gaussian 
distributions, ‘aberrant salience’ can be viewed as a ratio of precisions associated with beliefs 
about sensory inputs and high-level beliefs (Mathys et al., 2011; 2014; Diaconescu et al., 2019). An 
increase in this precision ratio will result in exaggerated belief updates or ‘aberrantly salient’ PEs. 
From here on out we will refer to beliefs about volatility when we speak about high-level beliefs.

In line with this literature, we have recently derived different hypotheses about the emergence 
of delusions based on simulations (Diaconescu et al., 2019) using the Hierarchical Gaussian Filter 
(HGF; Mathys et al. (2011, 2014)). Specifically, we hypothesised that different stages of psychosis 
may be associated with different computational mechanisms. Experiences of ‘aberrant salience’ 
in prodromal stages can be expressed computationally as overly precise prediction errors (i.e., 
increased learning rate). In the HGF, an increased learning rate results from either (1) increased 
precision associated with incoming sensory prediction errors (2) reduced precision of high-level 
beliefs about the volatility of the environment or (3) a combination of the two. Furthermore, we 
in line with others (Corlett et al., 2010; Sterzer et al., 2018) speculated that delusional conviction 
during later stages of psychosis may be accompanied by a compensatory increase of precision 
associated with high-level beliefs about volatility that functions to explain away overly precise 
prediction errors. This increase in high-level belief precision may render beliefs resistant to 
contradictory evidence and culminate in delusional conviction. Here, we test these hypotheses 
and investigate the computational mechanisms of emerging paranoia in early psychosis.
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2 METHODS
2.1 PARTICIPANTS

The sample comprised 19 individuals at clinical high risk for psychosis (CHR-P), 19 healthy controls 
(HC) that were group-matched to CHR-P with respect to age, gender, handedness, and cannabis 
consumption, and 18 short term medicated FEP (5.44 ± 2.79 days, median: 6, range: [0, 10]) 
resulting in a total sample of N = 56 participants. FEP were recruited from both inpatient care 
and the outpatient departments of the University Psychiatric Hospital (UPK) Basel, CHR-P were 
recruited from the Basel Early Treatment Service (BEATS) and HC via online advertisements and 
advertisements in public places (supermarkets, dentist clinics). All participants provided written 
informed consent. The study was approved by the local ethics committee (Ethikkommission 
Nordwest- und Zentralschweiz, no. 2017–01149) and conducted in accordance with the latest 
version of the Declaration of Helsinki.

2.2 IN- AND EXCLUSION CRITERIA

All participants were required to be at least 15 years old. Specific inclusion criteria for FEP were the 
diagnosis of a first psychotic episode of a schizophrenia spectrum disorder, which was assessed 
by the treating clinicians, and a treatment recommendation to begin antipsychotic medication 
issued independently of the study.

We included CHR-P who fulfilled either ultra-high risk for psychosis criteria, i.e. one or more of the 
following (1) attenuated psychotic symptoms (APS), (2) brief and limited intermittent psychotic 
symptoms (BLIP), and (3) a trait vulnerability in addition to a marked decline in psychosocial 
functioning also referred to as genetic risk and deterioration syndrome (GRD), assessed with the 
Structured Interview for Prodromal Symptoms (SIPS; Miller et al. (2003)); or basic symptom criteria, 
(Klosterkötter et al., 2001; Schultze-Lutter, 2009) i.e., cognitive-perceptive basic symptoms (COPER) 
or cognitive disturbances (COGIDS) assessed with the Schizophrenia Proneness Instrument, adult 
version (SPI-A; Schultze-Lutter et al. (2007)) or the Schizophrenia Proneness Instrument, child and 
youth version (SPI-CY; Schultze-Lutter and Koch (2010)), assessed by experienced clinical raters.

Exclusion criteria for all three groups were previous psychotic episodes, psychotic symptomatology 
secondary to an organic disorder, any neurological disorder (past or present), premorbid IQ 
<70 (assessed with the Mehrfachwahl-Wortschatz-Test, Version A; Lehrl et al. (1995)), colour 
blindness, substance use disorders according to ICD-10 criteria (except cannabis), alcohol or 
cannabis consumption within 24 hours prior to measurements, and regular drug consumption 
(except alcohol, nicotine, and cannabis), which was assessed during the admission interview and 
confirmed with a drug screening before the initial measurement (assessments were postponed 
following a positive test until a negative test result was obtained).

FEPs whose psychotic symptoms were associated with an affective psychosis or a borderline 
personality disorder at the time of the measurement were excluded. Since data was collected as 
part of a larger study that included neuroimaging assessments, additional exclusion criteria for 
CHR-P and HC were contraindications for fMRI and contraindications for EEG measurements for all 
three groups. However, we only present behavioural results here.

2.3 CLINICAL ASSESSMENT

Demographic and clinical information were assessed during an interview conducted within five 
days of the social learning task. This interview comprised assessment of clinical symptoms using 
the Positive and Negative Syndrome Scale (PANSS; Kay et al. (1987)) administered through trained 
clinical raters and self-assessment of paranoid thoughts (frequency, conviction and distress) using 
the Paranoia Checklist (PCL; Freeman et al., 2005).

2.4 TASK

All participants were asked to perform a deception-free and ecologically valid social learning task 
(Figure 1A) (Diaconescu et al., 2014; 2017), which required them to learn about the intentions of 
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an adviser that changed over time. The task comprised two phases. In the first phase participants 
received stable helpful advice, whereas advisers intentions were changing more rapidly during 
a second phase, the volatile phase (see volatility schedule in Figure 1B). Participants were asked 
to predict the outcome of a binary lottery on each trial. To this end, they received information 
from two sources, a non-social cue displaying the true winning probabilities of the lottery, and 
a recommendation of an adviser (social cue) presented in form of prerecorded videos that were 
extracted from trials in which a human adviser either tried to help or deceive a player in a previous 
human-human interaction (see Diaconescu et al. (2014, 2017) for more details).

Participants were truthfully informed that the adviser received privileged – but not complete – 
information about the upcoming outcome and that inaccurate advice could be due to mistakes or 
that the adviser could pursue a different agenda than the player and that the adviser’s intentions 
could change during the course of the experiment. We expected patients to be more sensitive to 
the increasing volatility of the task compared to HC.

2.5 COMPUTATIONAL MODELLING

2.5.1 Hierarchical Gaussian Filter

We modelled participants’ behaviour during the social learning task with a 3-level HGF (Mathys et 
al., 2011, 2014). The model comprises a perceptual model and a response model, which will be 
detailed below.

Perceptual model The standard 3-level HGF assumes that participants infer on a hierarchy of 
hidden states in the world x1, x2, and x3 that cause the sensory inputs that participants perceive 
(Mathys et al., 2011, 2014). Participants’ inference on the true hidden states of the world ( )k

ix  
at level i of the hierarchy on trial k are denoted ( )k

iµ . In the context of this task, the states that 
participants need to infer from experimental inputs on each trial (non-social cue and advice) are 
structured as follows: The lowest level state corresponds to the advice accuracy. On each trial k 
an advice can either be accurate ( )

1( 1)kx =  or inaccurate ( )
1( 0)kx = . This state can be described by a 

Bernoulli distribution that is linked to the state at the second level ( )
2
kx  through the unit sigmoid 

transformation:

 
( ) ( )
1 11( ) ( ) ( ) ( ) ( ) ( )

1 2 2 2 1 2( | ) ( ) (1 ( )) ~ Bernoulli( ; ( )),
k kx xk k k k k kp x x s x s x x s x−= −  (1)

with

 
1

( ) .
1 zs z

e−=
+

 (2)

( )
2
kx  represents the unbounded tendency towards helpful advice (–∞, +∞) or the adviser’s fidelity 

and is specified by a normal distribution:

 
( ) ( 1) ( ) ( ) ( 1) ( )
2 2 3 2 2 2 2 2 3 2( | , , , ) ~ ( ; , exp( ))k k k k k kp x x x x x xκ ω κ ω− − +  (3)

Figure 1 Social learning 
task and volatility schedule. 
A Social learning task. 
B Volatility schedule.
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The state at the third level ( )
3
kx  expresses the (log) volatility of the adviser’s intentions over time and 

is also specified by a normal distribution:

 
( ) ( 1) ( ) ( 1)

3 3 3( | , ) ~ ( ; , )k k k k
xp x x x xϑ ϑ− −  (4)

The dynamics of these states are governed by a number of subject-specific parameters, i.e., the 
evolution rate at the second level ω2, the coupling strength between the second and third level κ2, 
which determines the impact of the volatility of the adviser’s intentions on the belief update at the 
level below, and the evolution rate at the third level or the meta-volatility ϑ, which we fixed to a 
value of 0.5 to reduce the number of free parameters (see Table 1 for overview over all parameters). 
Additional subject-specific, free parameters were the prior expectations before seeing any input about 
the adviser’s fidelity (0)

2µ  and the volatility of the adviser’s intentions (0)
3µ . These parameters can be 

understood as an individual’s approximation to Bayesian inference and provide a concise summary of 
a participant’s learning profile. Using a variational approximation, efficient one step update equations 
can be derived (see Mathys et al. (2011, 2014) for more details), which take the following form:

 

( )
( ) ( )1

1( )

ˆ
,

k
k ki
i ik

i

πµ δ
π

−
−∆ ∝  (5)

where ( )k
iµ  is the expectation or belief at trial k and level i of the hierarchy, ( )

1ˆ k
iπ −  is the precision 

(inverse of the variance) from the level below (the hat symbol denotes that this precision has not 
been updated yet and is associated with the prediction before observing a new input), ( )k

iπ  is the 
updated precision at the current level, and ( )

1
k

iδ −  is a PE expressing the discrepancy between the 
expected and the observed outcome.

HYPOTHESIS I: HGF AND HYPOTHESIS II: MEAN-REVERTING HGF

PARAMETER MODEL 
COMPONENT 

PRIOR 
MEAN 

PRIOR 
VARIANCE 

TRANSFORMATION BOUNDS FIXED? BASED ON

κ2 Perceptual 
Model 

0.5a,b,c 1a,b,c logit [0, 1] – 

ω2 Perceptual 
Model 

–2b,c 4c – (–∞, +∞) – 

θ Perceptual 
Model 

0.5a,b,c 0c logit [0, 1] Yes c

(0)
2µ Perceptual 

Model 
0a,b,c 1a,b,c – (–∞, +∞) – 

(0)
2σ Perceptual 

Model 
1a,b,c 0a,c log [0, +∞) Yes a,c

(0)
3µ Perceptual 

Model 
1a,b,c 1b,c – (–∞, +∞) – 

(0)
3σ Perceptual 

Model 
1b,c 0c log [0, +∞) Yes c

ζ Response 
Model 

0.5b,c 1b,c logit [0, 1] – 

ν Response 
Model 

48a,b,c 1a,b,c log [0, +∞) – 

HYPOTHESIS II: MEAN-REVERTING HGF

PARAMETER MODEL 
COMPONENT 

PRIOR 
MEAN 

PRIOR 
VARIANCE 

TRANSFORMATION BOUNDS FIXED? BASED ON

m3 Perceptual 
Model 

1a,c 1a,c – (–∞, +∞) – 

φ3 Perceptual 
Model 

0.1a,c 0a,c logit [0, 1] Yes a,c

Table 1 Model parameter 
overview. Prior parameter 
values were chosen based on 
the references indicated next 
to prior means and variances. 
aCole et al. (2020).  
bDiaconescu et al. (2014). 
cHauke et al. (2018).
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We also employed a second, modified version of the HGF (Cole et al., 2020) that assumed that 
learning about an adviser’s intentions was not only driven by hierarchical PE updates, but also 
included a mean-reverting process at the third level formalising the idea that an altered perception 
of volatility may underlie learning about others’ intentions. In this mean-reverting HGF, the third 
level can again be described by a normal distribution:

 
( ) ( 1) ( ) ( 1) ( 1)

3 3 3 3 3 3 3 3( | , , , ) ~ ( ; ( ), ),k k k k k
xp x x m x x m xϑ φ φ ϑ− − −+ −  (6)

where φ3 represents a drift rate and m3 the equilibrium point towards which the state moves over 
time.

In this model, we fixed the drift rate φ3 to a value of 0.1 and estimated the equilibrium point m3 
as a subject-specific, free parameter. Note, that changing m3 to values that are lower than the 
prior about the volatility of the adviser’s intentions (0)

3µ  translates into reduced belief updates 
at all three levels of the hierarchy corresponding to perceiving the environment as increasingly 
stable over time (Figure 2). Conversely, if (0)

3 3m µ> , the magnitude of belief updates increases 
in line with a perception that the environment is increasingly volatile over time and beliefs 
should thus be adjusted more rapidly. Lastly, if (0)

3 3m µ= , agents would revert back to their prior 
beliefs about environmental volatility over time (i.e., “forget” about the observed inputs). For 
this reason, we refer to the model as mean-reverting HGF analogous to an Ornstein-Uhlenbeck 
process in discrete time (Uhlenbeck and Ornstein, 1930). Note, that introducing this drift allows 
to model an altered perception of volatility that manifest not only during the first trials as 
changes in prior uncertainty (0)

3µ  would induce (see simulations in the Supplement), but rather 
enables a more nuanced characterization of changes that occur within the experimental session. 
Its effect also impacts belief formation at lower levels and simulated responses more strongly 
(see Supplement).

As outlined in the introduction, we expected that prodromal psychosis would be characterised 
by overly precise prediction errors, caused by 1) increased low-level precision 2) decreased high-
level precision or 3) a combination of both (cf. Eq. 5. In the HGF, the dynamics of these precisions 
are governed by the model parameters. Based on our hypothesis and previous literature, we thus 
expected that increased low-level precision would be expressed as changes in the evolution rate at 
the low level (high ω2; Diaconescu et al. (2020); Reed et al. (2020)). Similarly, decreased high-level 
precision should be associated with parameters at the high level, namely the prior expectation 
about environmental volatility (high (0)

3µ ; Reed et al. (2020)), the equilibrium point of the drift at 
the third level (high m3; Cole et al. (2020); Diaconescu et al. (2019)) or the coupling between levels 
(κ2; Diaconescu et al. (2014); Reed et al. (2020)).

Figure 2 Simulating an altered 
perception of environmental 
volatility. Simulations showing 
the effect of changing the 
equilibrium point m3. Increasing 
m3 (colder colours) corresponds 
to perceiving the environment 
as increasingly volatile and 
results in larger precision-
weighted prediction errors 
leading to stronger belief 
updates across all levels of 
the hierarchy. Note, that high 
values of m3 also increase 
susceptibility to noisy inputs 
(e.g., trials 120–136). We 
hypothesised that this would 
be the case in early stages 
of psychosis. Reducing m3 
(warmer colours) on the other 
hand corresponds to perceiving 
the environment as increasingly 
stable and leads to reduced 
learning rates rendering an 
agent insensitive to true 
changes in the environment. 
We hypothesised that this 
could correspond to explaining 
away overly precise prediction 
errors and would be associated 
with delusional conviction. 
For the simulations, all other 
parameter values were fixed to 
the values of an ideal observer 
given the input.
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To test our a-priori hypothesis (Diaconescu et al., 2019) that different disease stages would be 
associated with distinct information processing changes, i.e. the prodrome with overly precise 
prediction errors (e.g., high m3) versus delusional conviction with overly precise high-level beliefs 
that explain away these prediction errors (low m3), we compared the mean-reverting HGF (with 
m3) to the standard HGF (without m3).

Response model The response model specifies how participants’ inference about the hidden 
states translates to decisions, i.e., to go with or against the advice. In our case the response model 
assumes that participants’ integrate the non-social cue c(k) (the outcome probability indicated by 
the pie chart) and their belief that the adviser is providing accurate advice ( )

1ˆ
kµ  before seeing the 

outcome on the current trial k:

 
( ) ( ) ( )

1 (1 ) ,ˆk k kb cζµ ζ= + −  (7)

where ζ is a weight associated with the advice that expresses how much participants rely on the 
social information compared to the non-social cue.

The probability that a participant follows the advice (y = 1) can then be described by a sigmoid 
transformation of the integrated belief b:

 
( 1| ) ,

(1 )
b

p y b
b b

β

β β= =
+ −  (8)

with

 ( )
3exp( ).ˆ kβ µ ν= − +  (9)

This relationship can be understood as a noisy mapping from the integrated beliefs to participants’ 
decisions, where the noise level is determined by the current prediction of the volatility of the 
advisers’ intentions ( )

3ˆ
kµ , such that decisions become more deterministic (i.e., exploitative), if 

the environment is currently perceived as stable or more stochastic (i.e., exploratory), if the 
environment is perceived as volatile. Modelling the exploration-exploitation trade-off as a function 
of participants’ perception of volatility was favoured in previous model selection results using the 
same task (Diaconescu et al., 2014, 2017). Parameter ν is another subject-specific parameter that 
captures decision noise that is independent of the perception of volatility (lower values indicate 
larger decision noise).

The models were implemented in Matlab (version: 2017a; https://mathworks.com) using the HGF 
toolbox (version: 3.0), which is made available as open-source code as part of the TAPAS (Frässle 
et al., 2021) software collection (https://github.com/translationalneuromodeling/tapas/releases/
tag/v3.0.0). Perceptual models were implemented using the ‘tapas_hgf_binary’ function for the 
standard 3-level HGF and the ‘tapas_hgf_ar1_binary’ function for the mean-reverting HGF.

2.5.2 Bayesian model selection

Based on our a simulation analysis (Diaconescu et al., 2019) and previous findings (Cole et al., 
2020; Diaconescu et al., 2014, 2020; Reed et al., 2020), we formulated competing hypotheses 
about the computational mechanisms that could underlie emerging paranoid behaviour (Figure 
3). A standard 3-level HGF (Hypothesis I) was compared to the mean-reverting HGF that assumed 
that learning about an adviser’s intentions was not only driven by hierarchical PE updates, but 
also included a drift process at the third level formalising the idea, that an altered perception of 
volatility underlies learning about others’ intentions in emerging psychosis (Hypothesis II; see also 
Figure 2). To arbitrate between the two hypotheses we performed random-effects Bayesian model 
selection (Rigoux et al., 2014; Stephan et al., 2009). Two additional control models were included, 
in which all parameters of the perceptual model were fixed to parameter values of an ideal 
Bayesian observer optimised based on the inputs alone using the ‘tapas_bayes_optimal_binary’ 
function to assess whether perceptual model parameters needed to be estimated for either of the 
two main models. These “null” models assume that any variation in advice-taking behavior can 
be attributed solely to the response model parameters, i.e. the social bias and the decision noise.

https://mathworks.com
https://github.com/translationalneuromodeling/tapas/releases/tag/v3.0.0
https://github.com/translationalneuromodeling/tapas/releases/tag/v3.0.0
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We report protected exceedance probabilities φ, which measure the probability that a model is 
more likely than any other model in the model space (Stephan et al., 2009), protected against 
the risk that differences between models arise due to chance alone (Rigoux et al., 2014). We also 
computed relative model frequencies f as a measure of effect size, which can be understood as 
the probability that a randomly sampled participant would be best explained by a given model. 
The model selection was implemented using the VBA toolbox (Daunizeau et al., 2014) (https://
mbb-team.github.io/VBA-toolbox/).

2.5.3 Model recovery

To assess whether models were recoverable, we conducted a series of simulations as done 
previously (Hauke et al., 2022). In brief, our model recovery analysis comprised simulating 20 
synthetic datasets based on the empirical parameter estimates obtained from fitting all models 
to the empirical data of every participant. The sample size of each synthetic dataset was chosen 
to be equivalent to the empirical sample size (N = 56). The noise level was set based on the 
empirically estimated decision noise νest. Each simulation was initialised using different random 
seeds to account for the stochasticity of the simulation. This led to a total of 4 (models) × 56 
(participants) × 20 (simulation seeds) = 4,480 simulations. Subsequently, we re-inverted each 
of the proposed models on the synthetic data to determine, whether we could recover the true 
model under which synthetic data was generated. To assess model recovery, we then performed 
random-effects Bayesian model selection on each of the datasets with a sample size of N = 56 as 
in the empirical data and averaged the resulting protected exceedance probabilities across the 20 
simulation seeds to obtain a model confusion matrix.

2.5.4 Parameter recovery

In line with our previous work (Hauke et al., 2022), we also performed a parameter recovery 
analysis to determine whether model parameter estimates were reliable. Using the simulation 
and model inversion results from the model recovery analysis (see preceding section), we assessed 
how accurately the parameters generating the data (‘simulated’) corresponded to the parameters 
that were estimated when re-inverting the same model on that data (‘recovered’). We report 
Pearson correlations and their associated p-values to quantify our ability to recover the model 
parameters. Since, the significance of these correlations is influenced by sample size, we also 
computed Cohen’s f 2, where an f 2 ≥ 0.35 can be considered a large effect size (Cohen, 1988) and 
was interpreted as evidence for good parameter recovery.

2.6 STATISTICAL ANALYSIS

We tested for differences in behaviour using a linear mixed-effects model with advice taking 
(#trials, in which participant went with the advice /# total trials) as the dependent variable and fixed 
effects for group and task phase (stable vs volatile), as well as a group-by-task-phase interaction 

Figure 3 Model space. Left: 
Standard 3-level Hierarchical 
Gaussian Filter (HGF). (Mathys 
et al., 2011, 2014) Right: Mean-
reverting HGF with a drift at 
the third level, which captures 
learning about the volatility of 
the adviser’s intentions. This 
model expresses the notion 
that early psychosis may be 
characterised by an altered 
perception of environmental 
volatility.

https://mbb-team.github.io/VBA-toolbox/
https://mbb-team.github.io/VBA-toolbox/
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as predictors of interest and age and working memory performance as covariates of no interest. 
Additionally, the model included a random intercept per participant.

Note, that including medication as a covariate is not recommended when comparing HC and 
patient groups. For completeness, however, we also report the results of mixed-effects model with 
current antipsychotic dose (100mg/day chlorpromazine equivalents) and current antidepressant 
dose (40mg/day fluoxetine equivalents) as covariates. Chlorpromazine equivalents were derived 
from The Maudsley® prescribing guidelines in Psychiatry (Taylor et al., 2021) which is based on 
the literature and clinical consensus. Since paliperidone was not listed, equivalent estimates for 
paliperidone were based on Leucht et al. (2014). Fluoxetine equivalents were based on Hayasaka 
et al. (2015), with the exception of vorioxetin and citalopram which were not listed. For these, 
equivalents doses were assumed to be 10mg vortioxetin and 30mg citalopram, respectively, 
based on clinical practice.

Differences in model parameters were assessed using non-parametric Kruskal-Wallis tests. All 
statistical analyses were conducted in R (version: 4.04; https://www.r-project.org/) using R-Studio 
(version: 1.4.1106; https://www.rstudio.com/). We report both uncorrected p-values (puncorr) and 
Bonferroni-corrected p-values adjusted for the number of free parameters (n = 7).

3 RESULTS
3.1 SOCIODEMOGRAPHIC AND CLINICAL CHARACTERISTICS

Sociodemographic and clinical characteristics are presented in Table 2.

HC 
n = 19 

CHR-P 
n = 19 

FEP 
n = 18 

TEST 
STATISTIC 

POST HOC 
CONTRASTS

Age 

mean [SD] 

21.37 

[2.52] 

21.05 

[3.52] 

33.44 

[11.70] 

F = 18.182 

p < 0.001 

FEP > HC

FEP > CHR-P

IQ 

mean [SD] 

108.11 

[9.85] 

105.95 

[12.28] 

112.29 

[16.25] 

F = 1.015 

p = 0.370 

Working memorya 

mean [SD] 

6.42 

[1.71] 

6.74 

[2.16] 

5.83 

[1.98] 

F = 1.011 

p = 0.371 

Sex [f/m] 11/8 

 

11/8 

 

7/11 

 

χ2 = 1.767 

p = 0.413 

Cannabis [y/n] 7/12 

 

8/11 

 

5/13 

 

χ2 = 0.842 

p = 0.656 

High risk typeb     

APS  15   

BLIP  1   

GRD  0   

COGDIS  4   

COOPER  2   

Psychotic disorder diagnosis     

F20 Schizophrenia   3  

F22 Delusional disorder   6  

F23 Brief psychotic disorder   9  

Table 2 Demographic and 
clinical characteristics. All 
p-values are uncorrected. 
HC: Healthy controls. CHR-P: 
Individuals at clinical high 
risk for psychosis. FEP: First-
episode psychosis patients. 
APS: Attenuated psychotic 
symptoms. BLIP: Brief and 
limited intermittent psychotic 
symptoms. GRD: Genetic risk 
and deterioration syndrome. 
COGDIS: Cognitive disturbances. 
COPER: Cognitive-perceptive 
basic symptoms. Cpz100mg/
day: Antipsychotic equivalent 
dose for 100mg chlorpromazine 
per day. Flu40mg/day: 
Antidepressant equivalent 
dose for 40mg fluoxetine 
per day. PANSS: Positive and 
Negative Syndrome Scale.(Kay 
et al., 1987) PCL: Paranoia 
Checklist (Freeman et al., 
2005). Bold print highlights 
p-values significant at: p < 0.05, 
uncorrected. aAssessed with the 
digit span backwards task from 
the Wechsler Adult Intelligence 
Scale–Revised (Wechsler, 
1981). bHigh risk types are not 
mutually exclusive.

(Contd.)

https://www.r-project.org/
https://www.rstudio.com/
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HC 
n = 19 

CHR-P 
n = 19 

FEP 
n = 18 

TEST 
STATISTIC 

POST HOC 
CONTRASTS

Antipsychotics [y/n] 0/19 

 

2/17 

 

14/4 

 

χ2 = 31.987 

p < 0.001 

FEP > CHR-P

FEP > HC

Aripiprazole   4  

Brexpiprazole   1  

Lurasidone   1  

Olanzapine   5  

Paliperidone   1  

Quetiapine   2  

Risperidone   1  

Haloperidol & Aripiprazol   1  

Antidepressants [y/n] 0/19 

 

9/10 

 

1/17 

 

χ2 = 17.268 

p < 0.001

CHR-P > FEP

CHR-P > HC

Buproprion  1   

Citalopram  1   

Escitalopram   1  

Fluoxetine  1   

Sertraline  1   

Vortioxetin  2   

Trazodon & Citalopram 1   

Trazodon & Sertralin 1   

Unknown  1   

Cpz100mg/day 

median [25th, 75th] 

0n = 19 

[0, 0] 

0n = 18 

[0, 0] 

83n = 18 

[33, 188] 

η2 = 0.592 

p < 0.001 

FEP > CHR-P

FEP > HC

Flu40mg/day 

median [25th, 75th] 

0n = 19 

[0, 0] 

0n = 17 

[0, 30] 

0n = 18 

[0, 0] 

η2 = 0.246 

p = 0.001 

CHR-P > HC

PANSS Positive 

median [25th, 75th] 

8n = 19 

[7, 8] 

11n = 19 

[10, 14] 

16n = 16 

[11, 23] 

η2 = 0.514 

p < 0.001 

FEP > CHR-P > HC

PANSS Negative 

median [25th, 75th] 

7n = 19 

[7, 8] 

9n = 19 

 [8, 10] 

12n = 16 

[9, 15] 

η2 = 0.364 

p < 0.001 

FEP > CHR-P > HC

PANSS General 

median [25th, 75th] 

18n = 19 

[16, 19] 

29n = 19 

[22, 32] 

34n = 16 

[32, 40] 

η2 = 0.674 

p < 0.001 

FEP > CHR-P > HC

PCL Frequency 

median [25th, 75th] 

23n = 19 

[19, 25] 

30n = 19 

[24, 33] 

36n = 17 

[23, 44] 

η2 = 0.202 

p = 0.004 

FEP > HC

CHR-P > HC

PCL Conviction 

median [25th, 75th] 

26n = 19 

[22, 31] 

33n = 19 

[28, 39] 

30n = 17 

[22, 55] 

η2 = 0.086 

p = 0.099 

PCL Distress 

median [25th, 75th] 

26n = 19 

[20, 37] 

29n = 19 

[23, 38] 

30n = 17 

[21, 46] 

η2 = 0.008 

p = 0.799 
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3.2 BEHAVIOURAL RESULTS

We identified a significant group-by-task-phase interaction on the frequency of advice-taking (F = 
5.275, p = 0.008; Figure 4A). To unpack this effect we repeated the analysis with three two-group 
models. We found significant group-by-task-phase interactions when comparing HC vs FEP (F = 
8.520, puncorr = 0.006, p = 0.018 Bonferroni-corrected for the number of comparisons, i.e. n = 3) and 
HC vs CHR-P (F = 7.745, puncorr = 0.009, p = 0.026), but not when comparing CHR-P vs FEP (F = 0.047, 
puncorr = 0.830, p = 1.000), suggesting that both CHR-P and FEP showed reduced flexibility to take 
environmental volatility into account as the difference between stable and volatile phase was 
reduced compared to HC. None of the covariates significantly impacted advice taking.

The group-by-task-phase interaction remained significant after including antipsychotic and 
antidepressant dose as covariates (F = 4.900, p = 0.011). Neither the effect of antipsychotic dose (F 
= 0.006, p = 0.939) nor antidepressant dose (F = 0.112, p = 0.739) were significant. Unpacking this 
model again revealed significant group-by-task-phase interactions when comparing HC vs FEP (F 
= 8.520, puncorr = 0.006, p = 0.018), but not when comparing CHR-P vs FEP (F = 0.671, puncorr = 0.419, 
p = 1.00). The group-by-task-phase interaction effect in HC vs CHR-P did not survive Bonferroni 
correction (F = 5.154, puncorr = 0.030, p = 0.089).

3.3 MODELLING RESULTS

3.3.1 Bayesian model selection and model recovery

The model recovery analysis (Figure 6) indicated that the control models (CI and CII) could not be 
well-distinguished. This was likely due to the fact that the equilibrium point m3 in CII was optimised 
based on the input alone, which resulted in a value for m3 that was close to the prior, rendering 
the predictions of the two control models very similar. Most importantly, however, the two main 
models associated with Hypothesis I and II could be well-distinguished.

After confirming that the two hypotheses were distinguishable, we first performed Bayesian 
model selection including participants from all groups. The results were inconclusive (φ = 74.03%, f 
= 53.80% in favour of Hypothesis II) possibly suggesting that different groups were best explained 
by different models (i.e., different computational mechanisms). To assess this possibility, we 
repeated the model selection for each group separately (Figure 5A). In HC, the winning model 
was the standard 3-level HGF (Hypothesis I; φ = 96.63%, f = 95.93%). Conversely, in FEP the mean-
reverting HGF that included a drift at the third level was selected (Hypothesis II; φ = 99.95%, f = 
95.92%). For CHR-P, we observed a more heterogeneous results: While the mean-reverting model 

Figure 4 Behavioural results 
and parameter group 
effects. A Behavioural results 
(ground truth). Black dashed 
lines indicate the average 
accuracy of advice for each 
of the two phases. B Model 
prediction. C Parameter 
effect for drift equilibrium 
point m3. D Parameter effect 
for coupling strength κ2. 
E Correlation between model 
parameters and either Positive 
and Negative Syndrome Scale 
(Kay et al., 1987) (PANSS) or 
Paranoia Checklist (Freeman 
et al., 2005) (PCL). Note, that 
raw scores are displayed for 
illustration purposes only. 
Statistical analyses were 
conducted using nonparametric 
Kendall rank correlations. 
Displayed regression lines were 
computed using a linear model 
based on the raw scores. Note, 
that one outlier (κ2 = 0.006) 
was removed for displaying 
the effect on κ2 in D and E. This 
outlier was outside of 7 × the 
interquartile range. Excluding 
this participant did not affect 
the significance of the results. 
P: Positive symptoms. N: 
Negative symptoms. G: General 
symptoms. F- and p-values 
indicate results of ANCOVAs 
corrected for working memory 
performance, antipsychotic 
medication, antidepressant 
medication, and age. Boxes 
span the 25th to 75th quartiles 
and whiskers extend from 
hinges to the largest and 
smallest value that lies within 
1.5 × interquartile range. 
Asterisks indicate significance 
of non-parametric Kruskal-
Wallis tests at: * p < 0.05, using 
Bonferroni correction.
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was favoured (Hypothesis II; φ = 84.50%, f = 60.24%), there was also evidence for the standard 
HGF, albeit to a much lesser extent (Hypothesis I; φ = 14.41%, f = 37.19%). Further inspection of 
the model attributions for all individual participants revealed an interesting pattern (Figure 5B). All 
HC were attributed to the standard HGF with over 97% probability, whereas FEP were attributed to 
the mean-reverting model with over 99%. Interestingly, model attributions for CHR-P were more 
heterogeneous ranging from 0 to 100% probability, suggesting that some individuals were better 
explained by the standard HGF, but others by the mean-reverting model. These results remained 
consistent when including other control models (Supplement).

3.3.2 Posterior predictive checks, parameter identifiability and parameter recovery

To assess whether the mean-reverting model (Hypothesis II) captured the behavioural effects 
of interest, we conducted posterior predictive checks by repeating the behavioural analysis on 
this model’s predictions. This analysis confirmed that the mean-reverting model recapitulated the 
group-by-task-phase interaction effect on advice-taking frequency (F = 4.343, p = 0.018; Figure 4B). 
We also repeated all three two-group models on the model predictions and found a significant 
group-by-task-phase interaction when comparing HC vs FEP (F = 8.337, puncorr = 0.007, p = 0.020) 
and no significant interaction when comparing CHR-P vs FEP (F = 1.106, puncorr = 0.300, p = 0.900) 
as before in the empirical data. The group-by-task-phase interaction did not reach significance for 
HC vs CHR-P (F = 3.662, puncorr = 0.064, p = 0.191).

When inspecting parameter identifiability, we observed unconcerning correlations (i.e., r ≤ |0.6|) 
between all pairs of parameters (r ≤ |0.57|, Figure 6).

Our parameter recovery analysis indicated good recovery (i.e., Cohen’s f 2 ≥ 0.35 in 100% of the 
simulations) for four out of the seven model parameters including the drift equilibrium point m3 
(Figure 6). However, recovery for (0)

3µ , (0)
2µ , and κ2 fulfilled this criterion only in 55%, 65%, and 55% 

of the simulations respectively. The model selection results remained consistent when fixing non-
recoverable parameters (Supplement).

3.3.3 Parameter group effects

The model selection indicated that the mean-reverting model was a better explanation for 
behaviour of FEP, but not of HC. In this situation, it is generally recommended to investigate 
parameter group effects using Bayesian model averaging (Stephan et al., 2010). However, we 

Figure 5 Bayesian model 
selection results. A Protected 
exceedance probabilities 
for within-group random-
effects Bayesian model 
selection(Stephan et al., 2009; 
Rigoux et al., 2014) to arbitrate 
between Hypothesis I (HI; 
standard 3-level HGF) and 
Hypothesis II (HII; mean-
reverting HGF with drift at 3rd 
level in line with an altered 
perception of volatility). Two 
corresponding control models 
were included (CI and CII), for 
which the perceptual model 
parameters were fixed. Model 
selection was performed 
separately in healthy controls 
(HC), individuals at clinical high 
risk for psychosis (CHR-P), or 
first-episode psychosis patients 
(FEP). The dashed line indicates 
95% protected exceedance 
probability. B Model attributions 
for each participant.
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were interested in assessing why this model was selected for FEP. Specifically, we wanted to 
investigate whether the perception of volatility in FEP increased or decreased over time (see also 
simulations illustrating these two possibilities in Figure 2), because our a priori hypothesis was 
that individuals with emerging psychosis should perceive the environment as increasingly volatile 
(increased m3 compared to controls; Diaconescu et al. (2019)). To distinguish between these two 
possibilities, we compared the drift equilibrium point m3 across the three groups and found that 
m3 was significantly different across the groups (η2 = 0.142, puncorr = 0.020). Post hoc tests revealed 
that m3 was significantly increased in FEP compared to HC suggesting that FEP perceived the 
intentions of the adviser as increasingly more volatile over time (η2 = 0.212, p = 0.017, Bonferroni-
corrected for the number of comparisons across groups, i.e., n = 3; Figure 4C). We also performed 
an exploratory analysis including all other free model parameters. This analysis revealed an 
additional effect on coupling strength κ2 (η

2 = 0.138, puncorr = 0.022), which was driven by reduced 
coupling strength between the second and third level of the perceptual hierarchy in FEP compared 
to HC (η2 = 0.217, p = 0.016, Bonferroni-corrected for the number of comparisons across groups, 
i.e., n = 3; Figure 4D). However, neither the effect on m3 nor κ2 survived Bonferroni correction for 
the number of parameters, i.e. n = 7 (p = 0.140 and p = 0.157, respectively).

3.3.4 Symptom-parameter correlations

Some authors (e.g., Esterberg and Compton (2009)) have argued that psychosis may be better 
conceptualised on a continuum rather than categorically, based on evidence that a significant 
percentage of the general populations reports some psychosis symptoms (Kendler et al., 1996; 
Tien, 1991). In line with this proposal, we assumed a continuum perspective and investigated 
whether the equilibrium point m3 and coupling strength κ2 were correlated with specific symptom 

Figure 6 Model diagnostics. 
A–G Parameter recovery result 
for one random seed for the 
mean-reverting HGF with drift 
at the 3rd level (Hypothesis 
II; Figure 3). H Parameter 
correlations computed across 
subjects for the mean-reverting 
HGF with a drift at the 3rd 
level (Hypothesis II; Figure 3). 
I Model recovery analysis. The 
grey scale indicates protected 
exceedance probability 
averaged across all 20 random 
seeds.
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subscales of the Positive and Negative Syndrome Scale (PANSS) (Kay et al., 1987) across all three 
groups with non-parametric Kendall rank correlations (see Figure 4E).

We found a positive correlation between m3 and PANSS positive symptoms (τ = 0.203, puncorr = 
0.038) and negative correlations between κ2 and PANSS negative and general symptoms (τ = 
–0.253, puncorr = 0.011 and τ = –0.219, puncorr = 0.022 respectively). Firstly, this suggest that individuals 
who perceived the adviser’s intentions to be increasingly volatile over time also experienced more 
severe positive psychosis symptoms. Secondly, the negative correlation between κ2 and PANSS 
negative and general symptoms implies that individuals with more severe negative and general 
symptoms displayed lower κ2 values or a decoupling between the third and the second levels 
of the hierarchy. These correlations, however, did not survive Bonferroni correction (p = 0.228, 
p = 0.068, and p = 0.132 respectively, adjusted for 2 (#parameters) × 3 (#PANSS subscales) = 6 
comparisons).

Since the PANSS (Kay et al., 1987) was specifically designed to assess symptom expression in 
clinical populations, we also calculated correlations with the Paranoia Checklist (PCL) (Freeman 
et al., 2005), an instrument more sensitive to expressions of paranoia in healthy or subclinical 
populations. We found a correlation between m3 and the PCL frequency subscale (τ = 0.201, puncorr 
= 0.034), indicating that individuals who perceived the adviser’s intentions to be increasingly 
volatile over time also reported a higher frequency of paranoid beliefs. Again, this correlation did 
not survive Bonferroni correction (p = 0.204, adjusted for 2 (#parameters) × 3 (#PCL subscales) = 
6 comparisons).

4 DISCUSSION
In this study, we investigated the computational mechanisms underlying emerging psychosis. 
Our model selection results suggest that FEP may operate under a different computational 
mechanism compared to HC that is characterised by perceiving the environment as increasingly 
volatile. A strength of our study is that this effect is unlikely due to long term medication effects as 
FEP were only briefly medicated. Furthermore, we observed more heterogeneity in CHR-P, possibly 
indicating that this modelling approach may be useful to stratify the CHR-P population and 
identify individuals that are more likely to transition to psychosis. Assuming a psychosis continuum 
perspective, we also found tentative evidence suggesting that the drift equilibrium point m3 and 
the coupling strength between hierarchical levels κ2 may be affected in emerging psychosis and 
that these parameters provide a clinically relevant description of individuals’ learning profiles. 
However, due to the small sample size, these results should be interpreted with caution.

4.1 RELATED MODELLING WORK

Bayesian accounts of psychosis (Fletcher and Frith, 2009; Sterzer et al., 2018; Adams et al., 2022) 
propose that psychosis may be characterised by overly precise PEs that provide the breeding ground 
for delusions to form. Our results are in line with these proposals and the predictions of increased 
precision-weighted PE-learning in early psychosis derived through simulations (Diaconescu et al., 
2019). Moreover, our results enable a more nuanced characterisation and point towards an altered 
perception of environmental volatility as a possible consequence of altered PE learning. Specifically, 
our finding that FEP individuals perceived the intentions of another person as increasingly volatile 
over time (higher m3) suggests that larger precision-weighted PEs are related to decreased high-
level precision (see Eq. 5). This finding is in line with Bayesian accounts, although we cannot say 
whether changes in the perception of volatility are caused by overly precise PEs or vice versa 
without longitudinal assessment of changes within the same participants. However, we note that 
the mean-reverting model was only conclusively selected in the FEP group and not already in the 
CHR-P group, although the mean-reverting model was favoured in the model attributions for some 
CHR-P individuals (Figure 5B). In contrast to our a priori hypothesis (Diaconescu et al., 2019), we 
did not find evidence for a compensatory increase in the precision of high-level priors or reduced 
learning (e.g., reduced evolution rate ω2) in patients who have strong conviction in their delusional 
beliefs. This was also proposed as a cognitive mechanism to make sense of ‘aberrantly salient’ PEs 
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by Kapur (2003) and observed empirically by others in healthy participants with paranoid ideations 
(Diaconescu et al., 2020; Wellstein et al., 2020) as well as patients with schizophrenia, (Baker et al., 
2019), although Baker et al. (2019) used a non-social probabilistic reasoning task.

Reed et al. (2020) employed the HGF to investigate the computational mechanisms underlying 
paranoia in a subclinical population and schizophrenia patients using a non-social reversal learning 
task. They found increased expected volatility (0)

3( )µ  in participants with higher levels of paranoia 
using the standard 3-level HGF. Our model selection suggested that this model explains behaviour 
better in HC, whereas FEP were better characterised by a mean-reverting HGF that included a drift 
at the third level. It should be noted that increasing (0)

3µ  and including a drift at the third level, 
which increases over time, can both be interpreted as expecting the environment to be more 
volatile, but the drift provides a more nuanced description of changes that occur during the learning 
session. Our results are thus in line with previous results, but possibly provide a perspective that 
takes within-task dynamics more explicitly into account (see simulations in the Supplement). An 
interesting observation based on simulations is that artificial agents with increased m3 are quicker 
to adapt to volatile changes between very helpful and very misleading advice (trials 68–119), but 
increasing m3 also leads to more susceptibility to noisy inputs following this period of rapid, but 
meaningful changes (trials 120–136; Supplement).

Moreover and in contrast to our results, Reed et al. (2020) found increased and not reduced 
coupling strength κ2. This discrepancy may be related to differences in the tasks employed (non-
social three-option reversal learning task vs our social learning task), but we also note that κ2 was 
not always well-recoverable in our simulation analysis. Therefore, we do not wish to draw strong 
conclusions based on the κ2 effect in our study, although we found effects suggesting that κ2 may 
be related to negative and general symptoms.

Even though m3 models within-task dynamics, the time-scale of the modelled effects depends on 
the frequency of interactions. In our study, players and advisers interacted very frequently within 
a brief time period. The adviser possessed incomplete information and sometimes made mistakes 
(although intended to help) and in other phases of the task, the adviser intentionally tried to 
mislead. Conceivably, in many real-world scenarios such interactions may unfold over much 
longer time-scales over several weeks or months. A simple explanation for misleading advice is 
that the adviser makes mistakes because they have incomplete information about the outcome, 
but interestingly, a participant, who perceives the intentions of the adviser to be increasingly 
volatile, may be adopting a more sophisticated explanation for the adviser’s actions (i.e., engage 
in overmentalising). This aligns with a recent finding showing that agents that overinterpret the 
intentions behind each other’s actions (in terms of depth of mentalisation) become paranoid 
(Alon et al., 2023). However, this interpretation needs to be tested by using a truly recursive social 
learning task.

4.2 IS THE PERCEPTION OF ENVIRONMENTAL VOLATILITY ALTERED 
SPECIFICALLY IN SOCIAL CONTEXTS?

Here, we employed an ecologically valid social learning task (Diaconescu et al., 2014, 2017) to 
study changes in learning about other’s intentions. Some authors (Reed et al., 2020; Suthaharan 
et al., 2021) have raised the question of whether changes in learning like the ones observed in 
this study are reflective of a specifically social or rather a domain-general learning deficit. Here, 
we did not assess whether differences with respect to the perception of environmental volatility 
were specific to a social context since we did not include a non-social control task. However, it 
will be important to address this question in future studies.

Interestingly, recent studies also identified a mean-reverting HGF with a drift towards larger 
volatility estimates as the winning model in a sample of CHR-P participants (Cole et al., 2020) 
and changes in m3 to be associated with a schizophrenia diagnosis (Fromm et al., 2022) in non-
social, two-option reversal learning tasks. Others found changes in model parameters related 
to the perception of environmental volatility in healthy, subclinical, and schizophrenia patient 
populations (Reed et al., 2020; Suthaharan et al., 2021). Reed et al. (2020) also included a social 
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control task, which did not affect the parameter effects. Therefore, this mechanism may not be 
specifically tied to social contexts, but instead may be related to a more general deficit in learning 
under uncertainty (Reed et al., 2020; Suthaharan et al., 2021). However, we do note that the 
social control task employed by Suthaharan et al. (2021) was not as ecologically valid as other 
tasks that were used to study paranoia such as the dictator game (Raihani and Bell, 2017; Barnby 
et al., 2020, 2022) or our task which was adapted from empirically-observed human-human 
interactions in a previous study using videos of human advisers intending to either help or mislead 
players (Diaconescu et al., 2014). Finally, it is also possible that there are both domain-general and 
domain-specific changes, but that these can only be studied at the neuronal level and converge 
on the same behavioural model parameters.

4.3 WHAT CAUSES AN ALTERED PERCEPTION OF VOLATILITY?

Interestingly, there may be at least two possibly interacting pathways that can lead to an altered 
perception of environmental volatility. First, abnormalities in monoamine systems may lead 
to chaotic PEs that are unpredictable and lead to the expectation that the environment is very 
volatile (Diaconescu et al., 2019; Kapur, 2003). In line with this pathway, Reed et al. (2020) found 
that methamphetamine administration induced changes in model parameters that impacted 
learning about environmental volatility in rats. Moreover, Diaconescu et al. (2017) found activation 
in dopaminoceptive regions such as the dopaminergic midbrain during the same social learning 
task that was used in the current study. Similarly, unstable dynamics in cortical circuits (related 
to synaptic dysfunction, or indeed abnormal neuromodulation) may also increase updating to 
unexpected evidence and thus increase the perception of environmental volatility (Adams et 
al., 2018; Hauke et al., 2022). Secondly, external shifts in the volatility of the environment, like 
for example the global health crisis of the COVID-19 pandemic, may also result in an altered 
perception of volatility and emergence of paranoid thoughts or endorsement of conspiracy 
theories (Suthaharan et al., 2021). This second (environmental) pathway may also be relevant 
for understanding increased incidence of schizophrenia in individuals that experience migration 
(Selten et al., 2020) and those living in urban environments (Vassos et al., 2012) as individuals 
exposed to both of these risk factors may be confronted with – in some cases drastically – changing 
environments. In summary, there are likely multiple possibly interacting pathways that could give 
rise to an altered perception of environmental volatility.

4.4 CLINICAL IMPLICATIONS

We identified trend-correlations between the drift equilibrium point m3 and PANSS positive 
symptoms and the frequency of paranoid thoughts and between the coupling strength κ2 and 
PANSS negative and general symptoms. While the evidence was not conclusive in this study 
since these correlations were not significant after multiple testing correction, we note that the 
effects were in the expected direction, such that perceiving the environment as increasingly 
volatile (higher m3) was associated with higher frequency of paranoid thoughts and more severe 
positive symptoms in general. Additionally, increased decoupling of the third level from the second 
level of the HGF, which leads to altered learning under uncertainty, correlated with more severe 
negative symptoms. Future well-powered studies are needed to assess whether these effects can 
be confirmed in larger samples. Interestingly, we observed heterogeneous model attributions 
specifically in CHR-P, whereas the model selection clearly favoured the standard 3-level HGF in 
HC and the mean-reverting model in FEP. This finding suggests that this model may be helpful to 
identify CHR-P patients that will more likely transition to a psychotic disorder.

4.5 LIMITATIONS

Several limitations of this study merit attention. First, the sample size of this study was small due to 
very selective inclusion criteria with respect to medication, which, however, enabled us to minimise 
the impact of long term medication effects. Larger studies are needed to replicate our results 
and increase statistical power to identify correlations between model parameters and symptoms. 
Secondly, we cannot assess the specificity of our results with respect to the social domain since 
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we did not include a non-social control task. Lastly, we also cannot speak to the specificity with 
respect to other diagnoses, because we did not include a clinical control group. Notably, similar 
results have been reported in individuals with autism for example (Lawson et al., 2017; Sevgi et al., 
2020), who, however, may share some biological mechanisms with schizophrenia (Chisholm et al., 
2015). Disentangling the specificity of our findings with respect to related (e.g., autism) and other 
disorders (e.g., depression) will be an important avenue for future research.

4.6 FUTURE DIRECTIONS

While we found evidence for increased uncertainty associated with higher-level beliefs about 
the volatility of others’ intentions, future studies will have to examine whether a compensatory 
increase in the precision of higher-level beliefs occurs during later stages of schizophrenia, possibly 
also fluctuating with the severity of psychosis, or whether other models are better suited to capture 
the conviction associated with delusory beliefs during acute psychotic states (e.g., Baker et al. 
(2019); Erdmann and Mathys (2021); Adams et al. (2022)). Furthermore, the neural correlates 
of belief updating in emerging psychosis during social learning should be examined to identify 
neural pathways that may underlie the changes in perception that were suggested by the model. 
Lastly, longitudinal studies are needed to assess whether model parameters can be leveraged as 
predictors for transition to psychosis or treatment response in individual patients with psychosis.

4.7 CONCLUSIONS

In conclusion, our results suggest that emerging psychosis is characterised by an altered perception 
of environmental volatility. Furthermore, we observed heterogeneity in model attributions in 
individuals at high risk for psychosis suggesting that this computational approach may be useful to 
stratify the high risk state and for predicting transition to psychosis in clinical high risk populations.
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	Participants were truthfully informed that the adviser received privileged – but not complete – information about the upcoming outcome and that inaccurate advice could be due to mistakes or that the adviser could pursue a different agenda than the player and that the adviser’s intentions could change during the course of the experiment. We expected patients to be more sensitive to the increasing volatility of the task compared to HC.
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	We also employed a second, modified version of the HGF () that assumed that learning about an adviser’s intentions was not only driven by hierarchical PE updates, but also included a mean-reverting process at the third level formalising the idea that an altered perception of volatility may underlie learning about others’ intentions. In this mean-reverting HGF, the third level can again be described by a normal distribution:
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	In this model, we fixed the drift rate φ to a value of 0.1 and estimated the equilibrium point m as a subject-specific, free parameter. Note, that changing m to values that are lower than the prior about the volatility of the adviser’s intentions  translates into reduced belief updates at all three levels of the hierarchy corresponding to perceiving the environment as increasingly stable over time (). Conversely, if , the magnitude of belief updates increases in line with a perception that the environment i
	3
	3
	3
	(0)3µ
	Figure 2
	(0)33mµ>
	(0)33mµ=
	Uhlenbeck and Ornstein, 1930
	(0)3µ

	As outlined in the introduction, we expected that prodromal psychosis would be characterised by overly precise prediction errors, caused by 1) increased low-level precision 2) decreased high-level precision or 3) a combination of both (cf. Eq. 5. In the HGF, the dynamics of these precisions are governed by the model parameters. Based on our hypothesis and previous literature, we thus expected that increased low-level precision would be expressed as changes in the evolution rate at the low level (high ω; Dia
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	To test our a-priori hypothesis () that different disease stages would be associated with distinct information processing changes, i.e. the prodrome with overly precise prediction errors (e.g., high m) versus delusional conviction with overly precise high-level beliefs that explain away these prediction errors (low m), we compared the mean-reverting HGF (with m) to the standard HGF (without m).
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	Response model The response model specifies how participants’ inference about the hidden states translates to decisions, i.e., to go with or against the advice. In our case the response model assumes that participants’ integrate the non-social cue c (the outcome probability indicated by the pie chart) and their belief that the adviser is providing accurate advice  before seeing the outcome on the current trial k:
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	This relationship can be understood as a noisy mapping from the integrated beliefs to participants’ decisions, where the noise level is determined by the current prediction of the volatility of the advisers’ intentions , such that decisions become more deterministic (i.e., exploitative), if the environment is currently perceived as stable or more stochastic (i.e., exploratory), if the environment is perceived as volatile. Modelling the exploration-exploitation trade-off as a function of participants’ percep
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	The models were implemented in Matlab (version: 2017a; ) using the HGF toolbox (version: 3.0), which is made available as open-source code as part of the TAPAS () software collection (). Perceptual models were implemented using the ‘tapas_hgf_binary’ function for the standard 3-level HGF and the ‘tapas_hgf_ar1_binary’ function for the mean-reverting HGF.
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	2.5.2 Bayesian model selection
	Based on our a simulation analysis () and previous findings (; , ; ), we formulated competing hypotheses about the computational mechanisms that could underlie emerging paranoid behaviour (). A standard 3-level HGF (Hypothesis I) was compared to the mean-reverting HGF that assumed that learning about an adviser’s intentions was not only driven by hierarchical PE updates, but also included a drift process at the third level formalising the idea, that an altered perception of volatility underlies learning abo
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	We report protected exceedance probabilities φ, which measure the probability that a model is more likely than any other model in the model space (), protected against the risk that differences between models arise due to chance alone (). We also computed relative model frequencies f as a measure of effect size, which can be understood as the probability that a randomly sampled participant would be best explained by a given model. The model selection was implemented using the VBA toolbox () ().
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	2.5.3 Model recovery
	To assess whether models were recoverable, we conducted a series of simulations as done previously (). In brief, our model recovery analysis comprised simulating 20 synthetic datasets based on the empirical parameter estimates obtained from fitting all models to the empirical data of every participant. The sample size of each synthetic dataset was chosen to be equivalent to the empirical sample size (N = 56). The noise level was set based on the empirically estimated decision noise ν. Each simulation was in
	Hauke et al., 2022
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	2.5.4 Parameter recovery
	In line with our previous work (), we also performed a parameter recovery analysis to determine whether model parameter estimates were reliable. Using the simulation and model inversion results from the model recovery analysis (see preceding section), we assessed how accurately the parameters generating the data (‘simulated’) corresponded to the parameters that were estimated when re-inverting the same model on that data (‘recovered’). We report Pearson correlations and their associated p-values to quantify
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	2.6 STATISTICAL ANALYSIS
	We tested for differences in behaviour using a linear mixed-effects model with advice taking (#trials, in which participant went with the advice /# total trials) as the dependent variable and fixed effects for group and task phase (stable vs volatile), as well as a group-by-task-phase interaction as predictors of interest and age and working memory performance as covariates of no interest. Additionally, the model included a random intercept per participant.
	Note, that including medication as a covariate is not recommended when comparing HC and patient groups. For completeness, however, we also report the results of mixed-effects model with current antipsychotic dose (100mg/day chlorpromazine equivalents) and current antidepressant dose (40mg/day fluoxetine equivalents) as covariates. Chlorpromazine equivalents were derived from The Maudsley® prescribing guidelines in Psychiatry () which is based on the literature and clinical consensus. Since paliperidone was 
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	Differences in model parameters were assessed using non-parametric Kruskal-Wallis tests. All statistical analyses were conducted in R (version: 4.04; ) using R-Studio (version: 1.4.1106; ). We report both uncorrected p-values (p) and Bonferroni-corrected p-values adjusted for the number of free parameters (n = 7).
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	3 RESULTS
	3.1 SOCIODEMOGRAPHIC AND CLINICAL CHARACTERISTICS
	Sociodemographic and clinical characteristics are presented in .
	Table 2

	3.2 BEHAVIOURAL RESULTS
	We identified a significant group-by-task-phase interaction on the frequency of advice-taking (F = 5.275, p = 0.008; ). To unpack this effect we repeated the analysis with three two-group models. We found significant group-by-task-phase interactions when comparing HC vs FEP (F = 8.520, p = 0.006, p = 0.018 Bonferroni-corrected for the number of comparisons, i.e. n = 3) and HC vs CHR-P (F = 7.745, p = 0.009, p = 0.026), but not when comparing CHR-P vs FEP (F = 0.047, p = 0.830, p = 1.000), suggesting that bo
	Figure 4A
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	The group-by-task-phase interaction remained significant after including antipsychotic and antidepressant dose as covariates (F = 4.900, p = 0.011). Neither the effect of antipsychotic dose (F = 0.006, p = 0.939) nor antidepressant dose (F = 0.112, p = 0.739) were significant. Unpacking this model again revealed significant group-by-task-phase interactions when comparing HC vs FEP (F = 8.520, p = 0.006, p = 0.018), but not when comparing CHR-P vs FEP (F = 0.671, p = 0.419, p = 1.00). The group-by-task-phase
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	3.3 MODELLING RESULTS
	3.3.1 Bayesian model selection and model recovery
	The model recovery analysis () indicated that the control models (CI and CII) could not be well-distinguished. This was likely due to the fact that the equilibrium point m in CII was optimised based on the input alone, which resulted in a value for m that was close to the prior, rendering the predictions of the two control models very similar. Most importantly, however, the two main models associated with Hypothesis I and II could be well-distinguished.
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	After confirming that the two hypotheses were distinguishable, we first performed Bayesian model selection including participants from all groups. The results were inconclusive (φ = 74.03%, f = 53.80% in favour of Hypothesis II) possibly suggesting that different groups were best explained by different models (i.e., different computational mechanisms). To assess this possibility, we repeated the model selection for each group separately (). In HC, the winning model was the standard 3-level HGF (Hypothesis I
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	Figure 5B

	3.3.2 Posterior predictive checks, parameter identifiability and parameter recovery
	To assess whether the mean-reverting model (Hypothesis II) captured the behavioural effects of interest, we conducted posterior predictive checks by repeating the behavioural analysis on this model’s predictions. This analysis confirmed that the mean-reverting model recapitulated the group-by-task-phase interaction effect on advice-taking frequency (F = 4.343, p = 0.018; ). We also repeated all three two-group models on the model predictions and found a significant group-by-task-phase interaction when compa
	Figure 4B
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	When inspecting parameter identifiability, we observed unconcerning correlations (i.e., r ≤ |0.6|) between all pairs of parameters (r ≤ |0.57|, ).
	Figure 6

	Our parameter recovery analysis indicated good recovery (i.e., Cohen’s f ≥ 0.35 in 100% of the simulations) for four out of the seven model parameters including the drift equilibrium point m (). However, recovery for , , and κ fulfilled this criterion only in 55%, 65%, and 55% of the simulations respectively. The model selection results remained consistent when fixing non-recoverable parameters (Supplement).
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	3.3.3 Parameter group effects
	The model selection indicated that the mean-reverting model was a better explanation for behaviour of FEP, but not of HC. In this situation, it is generally recommended to investigate parameter group effects using Bayesian model averaging (). However, we were interested in assessing why this model was selected for FEP. Specifically, we wanted to investigate whether the perception of volatility in FEP increased or decreased over time (see also simulations illustrating these two possibilities in ), because ou
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	3.3.4 Symptom-parameter correlations
	Some authors (e.g., Esterberg and Compton ()) have argued that psychosis may be better conceptualised on a continuum rather than categorically, based on evidence that a significant percentage of the general populations reports some psychosis symptoms (; ). In line with this proposal, we assumed a continuum perspective and investigated whether the equilibrium point m and coupling strength κ were correlated with specific symptom subscales of the Positive and Negative Syndrome Scale (PANSS) () across all three
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	We found a positive correlation between m and PANSS positive symptoms (τ = 0.203, p = 0.038) and negative correlations between κ and PANSS negative and general symptoms (τ = –0.253, p = 0.011 and τ = –0.219, p = 0.022 respectively). Firstly, this suggest that individuals who perceived the adviser’s intentions to be increasingly volatile over time also experienced more severe positive psychosis symptoms. Secondly, the negative correlation between κ and PANSS negative and general symptoms implies that individ
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	Since the PANSS () was specifically designed to assess symptom expression in clinical populations, we also calculated correlations with the Paranoia Checklist (PCL) (), an instrument more sensitive to expressions of paranoia in healthy or subclinical populations. We found a correlation between m and the PCL frequency subscale (τ = 0.201, p = 0.034), indicating that individuals who perceived the adviser’s intentions to be increasingly volatile over time also reported a higher frequency of paranoid beliefs. A
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	4 DISCUSSION
	In this study, we investigated the computational mechanisms underlying emerging psychosis. Our model selection results suggest that FEP may operate under a different computational mechanism compared to HC that is characterised by perceiving the environment as increasingly volatile. A strength of our study is that this effect is unlikely due to long term medication effects as FEP were only briefly medicated. Furthermore, we observed more heterogeneity in CHR-P, possibly indicating that this modelling approac
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	4.1 RELATED MODELLING WORK
	Bayesian accounts of psychosis (; ; ) propose that psychosis may be characterised by overly precise PEs that provide the breeding ground for delusions to form. Our results are in line with these proposals and the predictions of increased precision-weighted PE-learning in early psychosis derived through simulations (). Moreover, our results enable a more nuanced characterisation and point towards an altered perception of environmental volatility as a possible consequence of altered PE learning. Specifically,
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	Reed et al. () employed the HGF to investigate the computational mechanisms underlying paranoia in a subclinical population and schizophrenia patients using a non-social reversal learning task. They found increased expected volatility  in participants with higher levels of paranoia using the standard 3-level HGF. Our model selection suggested that this model explains behaviour better in HC, whereas FEP were better characterised by a mean-reverting HGF that included a drift at the third level. It should be n
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	Moreover and in contrast to our results, Reed et al. () found increased and not reduced coupling strength κ. This discrepancy may be related to differences in the tasks employed (non-social three-option reversal learning task vs our social learning task), but we also note that κ was not always well-recoverable in our simulation analysis. Therefore, we do not wish to draw strong conclusions based on the κ effect in our study, although we found effects suggesting that κ may be related to negative and general 
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	Even though m models within-task dynamics, the time-scale of the modelled effects depends on the frequency of interactions. In our study, players and advisers interacted very frequently within a brief time period. The adviser possessed incomplete information and sometimes made mistakes (although intended to help) and in other phases of the task, the adviser intentionally tried to mislead. Conceivably, in many real-world scenarios such interactions may unfold over much longer time-scales over several weeks o
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	Interestingly, recent studies also identified a mean-reverting HGF with a drift towards larger volatility estimates as the winning model in a sample of CHR-P participants () and changes in m to be associated with a schizophrenia diagnosis () in non-social, two-option reversal learning tasks. Others found changes in model parameters related to the perception of environmental volatility in healthy, subclinical, and schizophrenia patient populations (; ). Reed et al. () also included a social control task, whi
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	4.3 WHAT CAUSES AN ALTERED PERCEPTION OF VOLATILITY?
	Interestingly, there may be at least two possibly interacting pathways that can lead to an altered perception of environmental volatility. First, abnormalities in monoamine systems may lead to chaotic PEs that are unpredictable and lead to the expectation that the environment is very volatile (; ). In line with this pathway, Reed et al. () found that methamphetamine administration induced changes in model parameters that impacted learning about environmental volatility in rats. Moreover, Diaconescu et al. (
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	4.4 CLINICAL IMPLICATIONS
	We identified trend-correlations between the drift equilibrium point m and PANSS positive symptoms and the frequency of paranoid thoughts and between the coupling strength κ and PANSS negative and general symptoms. While the evidence was not conclusive in this study since these correlations were not significant after multiple testing correction, we note that the effects were in the expected direction, such that perceiving the environment as increasingly volatile (higher m) was associated with higher frequen
	3
	2
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	4.5 LIMITATIONS
	Several limitations of this study merit attention. First, the sample size of this study was small due to very selective inclusion criteria with respect to medication, which, however, enabled us to minimise the impact of long term medication effects. Larger studies are needed to replicate our results and increase statistical power to identify correlations between model parameters and symptoms. Secondly, we cannot assess the specificity of our results with respect to the social domain since we did not include
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	4.6 FUTURE DIRECTIONS
	While we found evidence for increased uncertainty associated with higher-level beliefs about the volatility of others’ intentions, future studies will have to examine whether a compensatory increase in the precision of higher-level beliefs occurs during later stages of schizophrenia, possibly also fluctuating with the severity of psychosis, or whether other models are better suited to capture the conviction associated with delusory beliefs during acute psychotic states (e.g., Baker et al. (); Erdmann and Ma
	2019
	2021
	2022

	4.7 CONCLUSIONS
	In conclusion, our results suggest that emerging psychosis is characterised by an altered perception of environmental volatility. Furthermore, we observed heterogeneity in model attributions in individuals at high risk for psychosis suggesting that this computational approach may be useful to stratify the high risk state and for predicting transition to psychosis in clinical high risk populations.
	DATA ACCESSIBILITY STATEMENT
	The analysis code for this study is publicly available under . The data is publicly available under . Note, that one participant did not consent to make their data available for reuse and was excluded from the public repository. To ensure reproducibility, we report all results excluding this participant in the Supplement.
	https://github.com/daniel-hauke/compi_
	ioio_phase
	https://osf.io/6rdjc/

	ADDITIONAL FILE
	The additional file for this article can be found as follows:
	•.Supplementary material. Supplementary simulations, supplementary results and reproducibility information. DOI: 
	https://doi.org/10.5334/cpsy.95.s1

	ACKNOWLEDGEMENTS
	We thank the participants for volunteering their energy and valuable time despite all the challenges they faced allowing us to pursue this research and the Schizophrenia International Research Society for honoring this work with the best poster price at the 2022 Congress of the Schizophrenia International Research Society. We also acknowledge that previous version of this article was published as part of DJH’s PhD thesis () and made available as a preprint on  ().
	Hauke, 2022
	https://www.medrxiv.org/
	Hauke et al., 2023

	FUNDING INFORMATION
	This work was supported by the Swiss National Science Foundation (Doc.Mobility, 200054 to DJH; Ambizione, PZ00P3_167952 to AOD, Project grant: CRSK-3_190834 to RB and AM) and the Krembil Foundation (to AOD).
	COMPETING INTERESTS
	The authors have no competing interests to declare.
	AUTHOR CONTRIBUTIONS
	DJH had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors contributed substantially to this work as outlined below in alphabetical order:
	Concept and design: AOD, DJH, SB
	Acquisition, analysis, or interpretation of data: All authors.
	Drafting of the manuscript: DJH
	Critical revision of the manuscript for important intellectual content: All authors.
	Obtained funding: AOD, DJH
	Administrative, technical, or material support: AOD, CA, SB, VR
	Supervision: AOD, VR
	AUTHOR AFFILIATIONS
	REFERENCES
	Adams, R. A., Napier, G., Roiser, J. P., Mathys, C., & Gilleen, J. (2018). Attractor-like dynamics in belief updating in schizophrenia. Journal of Neuroscience, 38(44), 9471–9485. DOI: 
	https://doi.org/10.1523/JNEUROSCI.3163-17.2018

	Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013). The computational anatomy of psychosis. Frontiers in Psychiatry, 4, 47. DOI: 
	https://doi.org/10.3389/fpsyt.2013.00047

	Adams, R. A., Vincent, P., Benrimoh, D., Friston, K. J., & Parr, T. (2022). Everything is connected: inference and attractors in delusions. Schizophrenia Research, 245, 5–22. DOI: 
	https://doi.org/10.1016/j.schres.2021.07.032

	Alon, N., Schulz, L., Dayan, P., & Barnby, J. M. (2023). Between prudence and paranoia: Theory of mind gone right, and wrong. In First Workshop on Theory of Mind in Communicating Agents. DOI: 
	https://doi.org/10.31234/osf.io/kh5c4

	Appelbaum, P. S., Robbins, P. C., & Roth, L. H. (1999). Dimensional approach to delusions: comparison across types and diagnoses. American Journal of Psychiatry, 156(12), 1938–1943. DOI: 
	https://doi.org/10.1176/ajp.156.12.1938

	Baker, S. C., Konova, A. B., Daw, N. D., & Horga, G. (2019). A distinct inferential mechanism for delusions in schizophrenia. Brain, 142(6), 1797–1812. DOI: 
	https://doi.org/10.1093/brain/awz051

	Barnby, J., Bell, V., Deeley, Q., & Mehta, M. (2020). Dopamine manipulations modulate paranoid social inferences in healthy people. Translational Psychiatry, 10(1), 214. DOI: 
	https://doi.org/10.1038/s41398-020-00912-4

	Barnby, J. M., Mehta, M. A., & Moutoussis, M. (2022). The computational relationship between reinforcement learning, social inference, and paranoia. PLoS Computational Biology, 18(7), e1010326. DOI: 
	https://doi.org/10.1371/journal.pcbi.1010326

	Chisholm, K., Lin, A., Abu-Akel, A., & Wood, S. J. (2015). The association between autism and schizophrenia spectrum disorders: A review of eight alternate models of co-occurrence. Neuroscience & Biobehavioral Reviews, 55, 173–183. DOI: 
	https://doi.org/10.1016/j.neubiorev.2015.04.012

	Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Routledge.
	Cole, D. M., Diaconescu, A. O., Pfeiffer, U. J., Brodersen, K. H., Mathys, C. D., Julkowski, D., Ruhrmann, S., Schilbach, L., Tittgemeyer, M., Vogeley, K., et al. (2020). Atypical processing of uncertainty in individuals at risk for psychosis. NeuroImage: Clinical, 26, 102239. DOI: 
	https://doi.org/10.1016/j.nicl.2020.102239

	Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From drugs to deprivation: a bayesian framework for understanding models of psychosis. Psychopharmacology, 206(4), 515–530. DOI: 
	https://doi.org/10.1007/s00213-009-1561-0

	Corlett, P. R., Taylor, J., Wang, X.-J., Fletcher, P., & Krystal, J. (2010). Toward a neurobiology of delusions. Progress in Neurobiology, 92(3), 345–369. DOI: 
	https://doi.org/10.1016/j.pneurobio.2010.06.007

	Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Computational Biology, 10(1), e1003441. DOI: 
	https://doi.org/10.1371/journal.pcbi.1003441

	Diaconescu, A. O., Hauke, D. J., & Borgwardt, S. (2019). Models of persecutory delusions: a mechanistic insight into the early stages of psychosis. Molecular Psychiatry, 24(9), 1258–1267. DOI: 
	https://doi.org/10.1038/s41380-019-0427-z

	Diaconescu, A. O., Mathys, C., Weber, L. A., Daunizeau, J., Kasper, L., Lomakina, E. I., Fehr, E., & Stephan, K. E. (2014). Inferring on the intentions of others by hierarchical Bayesian learning. PLoS Computational Biology, 10(9), e1003810. DOI: 
	https://doi.org/10.1371/journal.pcbi.1003810

	Diaconescu, A. O., Mathys, C., Weber, L. A., Kasper, L., Mauer, J., & Stephan, K. E. (2017). Hierarchical prediction errors in midbrain and septum during social learning. Social Cognitive and Affective Neuroscience, 12(4), 618–634. DOI: 
	https://doi.org/10.1093/scan/nsw171

	Diaconescu, A. O., Wellstein, K. V., Kasper, L., Mathys, C., & Stephan, K. E. (2020). Hierarchical Bayesian models of social inference for probing persecutory delusional ideation. Journal of Abnormal Psychology, 129(6), 556–569. DOI: 
	https://doi.org/10.1037/abn0000500

	Erdmann, T., & Mathys, C. (2021). A generative framework for the study of delusions. Schizophrenia Research. DOI: 
	https://doi.org/10.1016/j.schres.2020.11.048

	Esterberg, M. L., & Compton, M. T. (2009). The psychosis continuum and categorical versus dimensional diagnostic approaches. Current Psychiatry Reports, 11(3), 179–184. DOI: 
	https://doi.org/10.1007/s11920-009-0028-7

	Fenton, W. S., McGlashan, T. H., Victor, B. J., & Blyler, C. R. (1997). Symptoms, subtype, and suicidality in patients with schizophrenia spectrum disorders. American Journal of Psychiatry, 154(2), 199–204. DOI: 
	https://doi.org/10.1176/ajp.154.2.199

	Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48–58. DOI: 
	https://doi.org/10.1038/nrn2536

	Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H., Do, C. T., Harrison, O. K., Harrison, S. J., Heinzle, J., Iglesias, S., Kasper, L., et al. (2021). TAPAS: an open-source software package for translational neuromodeling and computational psychiatry. Frontiers in Psychiatry, 12, 857. DOI: 
	https://doi.org/10.3389/fpsyt.2021.680811

	Freeman, D. (2007). Suspicious minds: the psychology of persecutory delusions. Clinical Psychology Review, 27(4), 425–457. DOI: 
	https://doi.org/10.1016/j.cpr.2006.10.004

	Freeman, D., & Garety, P. (2014). Advances in understanding and treating persecutory delusions: a review. Social Psychiatry and Psychiatric Epidemiology, 49(8), 1179–1189. DOI: 
	https://doi.org/10.1007/s00127-014-0928-7

	Freeman, D., & Garety, P. A. (2000). Comments on the content of persecutory delusions: does the definition need clarification? British Journal of Clinical Psychology, 39(4), 407–414. DOI: 
	https://doi.org/10.1348/014466500163400

	Freeman, D., Garety, P. A., Bebbington, P. E., Smith, B., Rollinson, R., Fowler, D., Kuipers, E., Ray, K., & Dunn, G. (2005). Psychological investigation of the structure of paranoia in a non-clinical population. The British Journal of Psychiatry, 186(5), 427–435. DOI: 
	https://doi.org/10.1192/bjp.186.5.427

	Freeman, D., McManus, S., Brugha, T., Meltzer, H., Jenkins, R., & Bebbington, P. (2011). Concomitants of paranoia in the general population. Psychological Medicine, 41(5), 923–936. DOI: 
	https://doi.org/10.1017/S0033291710001546

	Fromm, S., Katthagen, T., Deserno, L., Heinz, A., Kaminski, J., & Schlagenhauf, F. (2022). Belief updating in subclinical and clinical delusions. Schizophrenia Bulletin Open. DOI: 
	https://doi.org/10.1093/schizbullopen/sgac074

	Hauke, D. J. (2022). Hierarchical Bayesian Inference in Psychosis. PhD thesis, University of Basel. 
	https://edoc.unibas.ch/89780/

	Hauke, D. J., Diaconescu, A. O., Wellstein, K., Tomiello, S., Rigoux, L., Heinzle, J., & Stephan, K. E. (2018). F237. Dopaminergic effects on hierarchical prediction errors and connectivity during social learning. Schizophrenia Bulletin, 44(suppl 1), S314–S315. DOI: 
	https://doi.org/10.1093/schbul/sby017.768

	Hauke, D. J., Roth, V., Karvelis, P., Adams, R. A., Moritz, S., Borgwardt, S., Diaconescu, A. O., & Andreou, C. (2022). Increased belief instability in psychosis predicts treatment response to metacognitive training. Schizophrenia Bulletin, 48(4), 826–838. DOI: 
	https://doi.org/10.1093/schbul/sbac029

	Hauke, D. J., Wobmann, M., Andreou, C., Mackintosh, A., de Bock, R., Karvelis, P., Adams, R. A., Sterzer, P., Borgwardt, S., Roth, V., et al. (2023). Aberrant perception of environmental volatility during social learning in emerging psychosis. medRxiv, 2023–02. DOI: 
	https://doi.org/10.1101/2023.02.02.23285371

	Hayasaka, Y., Purgato, M., Magni, L. R., Ogawa, Y., Takeshima, N., Cipriani, A., Barbui, C., Leucht, S., & Furukawa, T. A. (2015). Dose equivalents of antidepressants: evidence-based recommendations from randomized controlled trials. Journal of Affective Disorders, 180, 179–184. DOI: 
	https://doi.org/10.1016/j.jad.2015.03.021

	Howes, O. D., & Kapur, S. (2009). The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophrenia Bulletin, 35(3), 549–562. DOI: 
	https://doi.org/10.1093/schbul/sbp006

	Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. American Journal of Psychiatry, 160(1), 13–23. DOI: 
	https://doi.org/10.1176/appi.ajp.160.1.13

	Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276. DOI: 
	https://doi.org/10.1093/schbul/13.2.261

	Kendler, K. S., Gallagher, T. J., Abelson, J. M., & Kessler, R. C. (1996). Lifetime prevalence, demographic risk factors, and diagnostic validity of nonaffective psychosis as assessed in a us community sample: the national comorbidity survey. Archives of General Psychiatry, 53(11), 1022–1031. DOI: 
	https://doi.org/10.1001/archpsyc.1996.01830110060007

	Klosterkötter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter, F. (2001). Diagnosing schizophrenia in the initial prodromal phase. Archives of General Psychiatry, 58(2), 158–164. DOI: 
	https://doi.org/10.1001/archpsyc.58.2.158

	Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9), 1293–1299. DOI: 
	https://doi.org/10.1038/nn.4615

	Lehrl, S., Triebig, G., & Fischer, B. (1995). Multiple choice vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurologica Scandinavica, 91(5), 335–345. DOI: 
	https://doi.org/10.1111/j.1600-0404.1995.tb07018.x

	Leucht, S., Samara, M., Heres, S., Patel, M. X., Woods, S. W., & Davis, J. M. (2014). Dose equivalents for second-generation antipsychotics: the minimum effective dose method. Schizophrenia Bulletin, 40(2), 314–326. DOI: 
	https://doi.org/10.1093/schbul/sbu001

	Mathys, C., Daunizeau, J., Friston, K., & Stephan, K. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5, 39. DOI: 
	https://doi.org/10.3389/fnhum.2011.00039

	Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in Human Neuroscience, 8, 825. DOI: 
	https://doi.org/10.3389/fnhum.2014.00825

	Miller, T. J., McGlashan, T. H., Rosen, J. L., Cadenhead, K., Ventura, J., McFarlane, W., Perkins, D. O., Pearlson, G. D., & Woods, S. W. (2003). Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophrenia Bulletin, 29(4), 703–715. DOI: 
	https://doi.org/10.1093/oxfordjournals.schbul.a007040

	Raihani, N. J., & Bell, V. (2017). Paranoia and the social representation of others: a large-scale game theory approach. Scientific Reports, 7(1), 1–9. DOI: 
	https://doi.org/10.1038/s41598-017-04805-3

	Reed, E. J., Uddenberg, S., Suthaharan, P., Mathys, C. D., Taylor, J. R., Groman, S. M., & Corlett, P. R. (2020). Paranoia as a deficit in non-social belief updating. Elife, 9, e56345. DOI: 
	https://doi.org/10.7554/eLife.56345.sa2

	Rigoux, L., Stephan, K., Friston, K., & Daunizeau, J. (2014). Bayesian model selection for group studies | revisited. NeuroImage, 84, 971–985. DOI: 
	https://doi.org/10.1016/j.neuroimage.2013.08.065

	Saarinen, P. I., Lehtonen, J., & Lönnqvist, J. (1999). Suicide risk in schizophrenia: an analysis of 17 consecutive suicides. Schizophrenia Bulletin, 25(3), 533–542. DOI: 
	https://doi.org/10.1093/oxfordjournals.schbul.a033399

	Sartorius, N., Jablensky, A., Korten, A., Ernberg, G., Anker, M., Cooper, J. E., & Day, R. (1986). Early manifestations and first-contact incidence of schizophrenia in different cultures: A preliminary report on the initial evaluation phase of the WHO Collaborative Study on Determinants of Outcome of Severe Mental Disorders. Psychological Medicine, 16(4), 909–928. DOI: 
	https://doi.org/10.1017/S0033291700011910

	Schultze-Lutter, F. (2009). Subjective symptoms of schizophrenia in research and the clinic: the basic symptom concept. Schizophrenia Bulletin, 35(1), 5–8. DOI: 
	https://doi.org/10.1093/schbul/sbn139

	Schultze-Lutter, F., Addington, J., Ruhrmann, S., & Klosterkötter, J. (2007). Schizophrenia Proneness Instrument, adult version (SPI-A). Rome: Giovanni Fioriti.
	Schultze-Lutter, F., & Koch, E. (2010). Schizophrenia Proneness Instrument: child and youth version (SPI-CY). Rome: Giovanni Fioriti.
	Selten, J.-P., Van Der Ven, E., & Termorshuizen, F. (2020). Migration and psychosis: a meta-analysis of incidence studies. Psychological Medicine, 50(2), 303–313. DOI: 
	https://doi.org/10.1017/S0033291719000035

	Sevgi, M., Diaconescu, A. O., Henco, L., Tittgemeyer, M., & Schilbach, L. (2020). Social Bayes: Using Bayesian Modeling to Study Autistic Trait–Related Differences in Social Cognition. Biological Psychiatry, 87(2), 185–193. DOI: 
	https://doi.org/10.1016/j.biopsych.2019.09.032

	Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59(10), 929–939. DOI: 
	https://doi.org/10.1016/j.biopsych.2005.10.005

	Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. NeuroImage, 46(4), 1004–1017. DOI: 
	https://doi.org/10.1016/j.neuroimage.2009.03.025

	Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage, 49(4), 3099–3109. DOI: 
	https://doi.org/10.1016/j.neuroimage.2009.11.015

	Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L., Petrovic, P., Uhlhaas, P., Voss, M., & Corlett, P. R. (2018). The predictive coding account of psychosis. Biological Psychiatry, 84(9), 634–643. DOI: 
	https://doi.org/10.1016/j.biopsych.2018.05.015

	Suthaharan, P., Reed, E. J., Leptourgos, P., Kenney, J. G., Uddenberg, S., Mathys, C. D., Litman, L., Robinson, J., Moss, A. J., Taylor, J. R., et al. (2021). Paranoia and belief updating during the COVID-19 crisis. Nature Human Behaviour, 5(9), 1190–1202. DOI: 
	https://doi.org/10.1038/s41562-021-01176-8

	Taylor, D. M., Barnes, T. R., & Young, A. H. (2021). The Maudsley prescribing guidelines in psychiatry. John Wiley & Sons. DOI: 
	https://doi.org/10.1002/9781119870203

	Tien, A. Y. (1991). Distribution of hallucinations in the population. Social Psychiatry and Psychiatric Epidemiology, 26(6), 287–292. DOI: 
	https://doi.org/10.1007/BF00789221

	Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the Theory of the Brownian Motion. Physical Review, 36(5), 823. DOI: 
	https://doi.org/10.1103/PhysRev.36.823

	Vassos, E., Pedersen, C. B., Murray, R. M., Collier, D. A., & Lewis, C. M. (2012). Meta-analysis of the association of urbanicity with schizophrenia. Schizophrenia Bulletin, 38(6), 1118–1123. DOI: 
	https://doi.org/10.1093/schbul/sbs096

	Wechsler, D. (1981). Wechsler Adult Intelligence Scale-revised (WAIS-R). Psychological Corporation, San Antonio.
	Wellstein, K. V., Diaconescu, A. O., Bischof, M., Rüesch, A., Paolini, G., Aponte, E. A., Ullrich, J., & Stephan, K. E. (2020). Inflexible social inference in individuals with subclinical persecutory delusional tendencies. Schizophrenia Research, 215, 344–351. DOI: 
	https://doi.org/10.1016/j.schres.2019.08.031

	Winton-Brown, T. T., Fusar-Poli, P., Ungless, M. A., & Howes, O. D. (2014). Dopaminergic basis of salience dysregulation in psychosis. Trends in Neurosciences, 37(2), 85–94. DOI: 
	https://doi.org/10.1016/j.tins.2013.11.003


	DANIEL J. HAUKE 
	DANIEL J. HAUKE 
	Link

	MICHELLE WOBMANN
	CHRISTINA ANDREOU 
	Link

	AMATYA J. MACKINTOSH 
	Link

	RENATE DE BOCK 
	Link

	POVILAS KARVELIS 
	Link

	RICK A. ADAMS 
	Link

	PHILIPP STERZER 
	Link

	STEFAN BORGWARDT 
	Link

	VOLKER ROTH 
	Link

	ANDREEA O. DIACONESCU 
	Link


	Altered Perception of Environmental Volatility During Social Learning in Emerging Psychosis
	Altered Perception of Environmental Volatility During Social Learning in Emerging Psychosis

	ABSTRACT
	ABSTRACT
	Paranoid delusions or unfounded beliefs that others intend to deliberately cause harm are a frequent and burdensome symptom in early psychosis, but their emergence and consolidation still remains opaque. Recent theories suggest that overly precise prediction errors lead to an unstable model of the world providing a breeding ground for delusions. Here, we employ a Bayesian approach to test for such an unstable model of the world and investigate the computational mechanisms underlying emerging paranoia.
	We modelled behaviour of 18 first-episode psychosis patients (FEP), 19 individuals at clinical high risk for psychosis (CHR-P), and 19 healthy controls (HC) during an advice-taking task designed to probe learning about others’ changing intentions. We formulated competing hypotheses comparing the standard Hierarchical Gaussian Filter (HGF), a Bayesian belief updating scheme, with a mean-reverting HGF to model an altered perception of volatility.
	There was a significant group-by-volatility interaction on advice-taking suggesting that CHR-P and FEP displayed reduced adaptability to environmental volatility. Model comparison favored the standard HGF in HC, but the mean-reverting HGF in CHR-P and FEP in line with perceiving increased volatility, although model attributions in CHR-P were heterogeneous. We observed correlations between perceiving increased volatility and positive symptoms generally as well as with frequency of paranoid delusions specific
	Our results suggest that FEP are characterised by a different computational mechanism – perceiving the environment as increasingly volatile – in line with Bayesian accounts of psychosis. This approach may prove useful to investigate heterogeneity in CHR-P and identify vulnerability for transition to psychosis.
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	Figure 4 Behavioural results and parameter group effects. A Behavioural results (ground truth). Black dashed lines indicate the average accuracy of advice for each of the two phases. B Model prediction. C Parameter effect for drift equilibrium point m. D Parameter effect for coupling strength κ. E Correlation between model parameters and either Positive and Negative Syndrome Scale (Kay et al., 1987) (PANSS) or Paranoia Checklist (Freeman et al., 2005) (PCL). Note, that raw scores are displayed for illustrat
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	Figure
	Figure 5 Bayesian model selection results. A Protected exceedance probabilities for within-group random-effects Bayesian model selection(Stephan et al., 2009; Rigoux et al., 2014) to arbitrate between Hypothesis I (HI; standard 3-level HGF) and Hypothesis II (HII; mean-reverting HGF with drift at 3 level in line with an altered perception of volatility). Two corresponding control models were included (CI and CII), for which the perceptual model parameters were fixed. Model selection was performed separately
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	Figure
	Figure 6 Model diagnostics. A–G Parameter recovery result for one random seed for the mean-reverting HGF with drift at the 3 level (Hypothesis II; Figure 3). H Parameter correlations computed across subjects for the mean-reverting HGF with a drift at the 3 level (Hypothesis II; Figure 3). I Model recovery analysis. The grey scale indicates protected exceedance probability averaged across all 20 random seeds.
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