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ABSTRACT
Introduction: Illness course plays a crucial role in delineating psychiatric disorders. 
However, existing nosologies consider only its most basic features (e.g., symptom 
sequence, duration). We developed a Dynamic Causal Model (DCM) that characterizes 
course patterns more fully using dense timeseries data. This foundational study introduces 
the new modeling approach and evaluates its validity using empirical and simulated data.

Methods: A three-level DCM was constructed to model how latent dynamics produce 
symptoms of depression, mania, and psychosis. This model was fit to symptom scores 
of nine patients collected prospectively over four years, following first hospitalization. 
Simulated subjects based on these empirical data were used to evaluate model 
parameters at the subject-level. At the group-level, we tested the accuracy with which 
the DCM can estimate the latent course patterns using Parametric Empirical Bayes (PEB) 
and leave-one-out cross-validation.

Results: Analyses of empirical data showed that DCM accurately captured symptom 
trajectories for all nine subjects. Simulation results showed that parameters could be 
estimated accurately (correlations between generative and estimated parameters >= 
0.76). Moreover, the model could distinguish different latent course patterns, with PEB 
correctly assigning simulated patients for eight of nine course patterns. When testing 
any pair of two specific course patterns using leave-one-out cross-validation, 30 out of 
36 pairs showed a moderate or high out-of-samples correlation between the true group-
membership and the estimated group-membership values.

Conclusion: DCM has been widely used in neuroscience to infer latent neuronal processes 
from neuroimaging data. Our findings highlight the potential of adopting this methodology 
for modeling symptom trajectories to explicate nosologic entities, temporal patterns that 
define them, and facilitate personalized treatment.
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INTRODUCTION
Existing psychiatric nosologies—Diagnostic and Statistical Manual of Mental Disorders (DSM) 
and International Classification of Diseases (ICD)—are based primarily on clinical observations. 
To-date, no categorical diagnosis has been developed based on the statistical modeling of how 
psychopathology manifests in clinical measurements over time (Krueger et al., 2018). Accordingly, 
current nosologies are heuristic rather than mechanistic descriptions. Many have argued that 
the limited validity of the ensuing classifications contributes to the sluggish pace of discovery in 
psychiatry (Cuthbert & Insel, 2013; Gordon & Redish, 2016; Hyman, 2010). Psychiatric diagnosis 
also offers limited guidance to care. Clinicians frequently forego a formal diagnostic assessment 
and prescribe treatment based more on symptoms than diagnosis (Taylor, 2016; Waszczuk et al., 
2017), as many perceive diagnostic manuals to be unhelpful in prognostication and treatment 
selection (First et al., 2018).

Computational psychiatry offers to replace heuristic diagnoses with formal statistical models 
that can predict illness course and treatment response (Friston et al., 2017; Krystal et al., 2017; 
Nelson et al., 2017; Wang & Krystal, 2014). The aspiration here is that modeling symptom patterns 
over time can reveal underlying dynamics—and forecast clinical trajectories in the same spirit 
as weather forecasts. These latent (i.e., unobservable) dynamics may differ between individuals 
in type (e.g., whether psychosis is limited to mood episodes or occurs independent of mood 
disturbance) or continuous gradation (e.g., propensity to depression). Accordingly, a computational 
nosology would be a system based on individual variations in underlying dynamic processes that 
generate symptoms, and diagnosis would be the process of describing patient’s clinical course 
in terms of these processes, that is, what trajectory the illness follows. Course typologies play 
an important role in psychiatry (Angst et al., 2003; Ciompi, 1980), but they have been derived 
by clinical observation, and statistical modeling offers to improve their validity. Development of 
such dynamic models requires intensive longitudinal data with dozens, perhaps even hundreds of 
observations per patient (Beltz & Gates, 2017). Electronic health records, mobile monitoring, and 
experience sampling technologies are currently making such data accessible (Wright & Woods, 
2020).

Multiple approaches are available for analysis of intensive longitudinal data. The most 
common strategy is modeling of trajectories defined by intercept and slope (Duncan et al., 
2011; Nagin & Odgers, 2010). However, these models preclude the nonlinear dynamics that 
underwrite symptoms. Another strategy is to model a network of symptoms for each individual 
(Asparouhov et al., 2018; Epskamp et al., 2018; Fisher et al., 2017; Lane et al., 2019). This 
approach is truly personalized and can describe complex dynamics. However, it is focused on 
the level of relations among individual symptoms and does not seek to characterize constructs 
underpinning multiple symptoms. Identification of latent constructs may offer a more 
parsimonious account of the phenomena than mapping of symptom relations. Furthermore, 
network modeling describes the structure of relationships among its elements and is not 
typically concerned with forecasting. 

Dynamic Causal Modeling (DCM) is an approach to modeling time series data that was developed in 
neuroscience and has helped to understand many neuronal phenomena (Daunizeau et al., 2011; 
Frässle et al., 2021; Friston et al., 2003; Papadopoulou et al., 2017). It models latent variables 
generating observed data and characterizes their dynamics in terms of model parameters, such 
as strength of causal links or directed connectivity, rate constants, time constants, and so on. 
DCM relies on the construction of a generative model that describes latent processes that give rise 
to observed time-series data. Here, we use a specific type of generative model, namely, state-
space models, which have been widely applied in neuroscience. In neuroimaging, DCM has been 
used to examine complex, non-linear, and context-sensitive neuronal dynamics and connectivity 
across brain regions (Friston, Harrison, & Penny, 2003). This was achieved by modeling how neural 
activity and connectivity are disturbed by external stimulation, typically in an experimental 
task, which gives rise to the measurable data, e.g., the blood-oxygen-level-dependent signal in 
functional magnetic resonance imaging. This modeling approach has produced a large scientific 
literature since its development and is considered as a standard method in neuroimaging research 
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(Daunizeau et al., 2011). The fundamental advantage of a generative (state space) model of 
timeseries data is that it can be used for prediction and forecasting. Perhaps the best example of  
this is the recent application of DCM to agent-based modeling and quantitative epidemiology 
(Friston et al., 2020; Gandolfi et al., 2021), affording an empirically informed approach to situational 
awareness, forecasting and scenario modeling of the spread of infectious diseases (Friston et al., 
2020).

Applied to psychiatric symptoms, this means that the symptoms at a given time point are regarded 
as the observable consequence of underlying disease dynamics, which can be used to forecast 
change in symptoms over time and in response to specific exposures or interventions. Importantly, 
individual differences in these underlying dynamics (i.e., time-invariant model parameters that 
differ between people) can inform nosology. When provided with the symptoms, one can invert the 
model; that is, estimate latent disease processes from observed symptoms timeseries. Following 
this, the evidence for alternative candidate models can be compared: for example, to assess 
whether the data of a new patient, with an unknown etiology, are best explained by a model 
previously trained on patients with one disease relative to another. In this context, the evidence 
(a.k.a., marginal likelihood) for a model has a specific meaning: it is the probability of observing the 
data given the model. Testing hypotheses based on this quantity is referred to as Bayesian model 
comparison. Accordingly, DCM offers the necessary tools to explain and predict illness time course, 
which could, in principle, provide a new quantitative tool for computational nosology.

The current paper takes the first step towards applying DCM to psychiatric nosology. We introduce 
a proof-of-concept model that demonstrates the feasibility of modeling longitudinal psychiatric 
symptom data, using technologies that are well established in neurophysiology—and are currently 
being applied in public health and epidemiology. We focused on psychosis, depression, and mania 
symptoms, as the nosology of psychotic disorders is, arguably, unresolved, and temporal relations 
among symptoms are central to delineation of these constructs (Kotov et al., 2022; Kotov et al., 
2013).

In what follows, we first describe a generative model for timeseries data in a psychiatric setting. 
Second, we illustrate fitting this model to data from a sample of patients with first-admission 
psychosis to evaluate its ability to explain diverse clinical (symptomatic) trajectories. Third, we 
used simulations to evaluate the accuracy of inferring model parameters and classifying people 
according to certain mixtures of parameters that give rise to distinct kinds of trajectories. Finally, 
we discuss the potential utility of the current approach for future nosology research.

METHODS AND MATERIALS
THE GENERATIVE MODEL

A dynamic causal model was constructed based on a previous theoretical proposal (Friston et 
al., 2017) with significant modifications. Figure 1 illustrates the graphical model that specifies 
how a timeseries of symptoms s(t)—that constitute observable outcomes—are generated 
by latent “psychopathology” states y(t), which are themselves determined by a linear 
combination of “pathophysiology” states x(t), under the influences of exogenous inputs v(t). 
Also see Table 1 for a glossary of terms. Following the nomenclature of Friston et al. (2017) 
we refer the two levels of latent states in terms of “pathophysiology” and “psychopathology.” 
However, we put quotation marks around these terms because these are abstractions that do 
not commit to specific psychopathological constructs or pathophysiologic processes, at this 
stage. 

Central to this model is the concept of an abstract space of pathophysiology. At any given time 
t, the patient occupies a position in this space, encoded by the vector of coordinates x(t). As the 
disease progresses, the patient follows a trajectory through the pathophysiology space, where 
the course of this trajectory is estimated from the data. The patient’s position in pathophysiology 
space x(t) determines their level of psychopathology, y(t), which is effectively binarized to generate 
observed symptom scores, s(t). Therefore, in this model, symptoms are treated as a consequence 
of the underlying pathophysiology and resultant psychopathology.
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In detail, the trajectory of the latent pathophysiology states is modelled with a Lorenz attractor 
with three parameters (A). The Lorenz attractor was chosen because it is the most simple and 
generic formulation of itinerant dynamics – i.e., it is a normal form for a system of dimension three 
(Shil’Nikov et al., 1993). Having three states is the minimum necessary for any system to show 
itinerancy or chaos. Since its introduction in atmospheric dynamics, it has been used widely for 
modeling chaotic and dynamic systems in physics and biology. Importantly, the Lorenz attractor 
can model cycles or orbits, which we anticipate will be important for capturing relapse in psychiatric 
illness. For demonstration purposes, for the Lorenz attractor parameters, only the 2nd parameter 
(known as the Rayleigh parameter) was allowed to vary in the current study. We chose the Rayleigh 
parameter because it determines the cyclicity of the latent pathophysiological states, where cycle 
patterns of disease progression are of particular interest to psychiatric research (technically, 
changing this parameter induces bifurcations that changes the trajectory qualitatively; from a 
simple decay to a fixed point, through periodic cycles to chaotic dynamics). The exogenous inputs 
(e.g., stressors or therapeutic interventions) v(t) are assumed to be smooth and were modeled 
as a discrete cosine transformation (DCT) basis set, which form the columns of a general linear 
model (i.e., design matrix) D weighted by parameter vector C. This relatively unconstrained basis 
set was selected because our exemplar empirical data did not contain a detailed assessment of 
exogenous inputs, which could be positive (e.g., intervention) or negative (e.g., life stressor). A DCT 
basis set can model any smooth continuous function and is the basis set of choice, given its well-
known boundary and compression properties. An 8-order DCT was chosen given the natural time 
constants of putative stressors and therapeutic interventions (as set out in Table 1). In practice the 
optimal number of basis functions could be selected for a particular application through Bayesian 
model comparison. A greater number of basis functions effectively allow for ‘faster’ exogenous 
effects. Alternatively, the DCT basis set could be replaced with regressors (dummy variables) 
encoding known or hypothesised exogenous inputs, although these variables were not available 
here. Conceptually, this models a situation where the state-space of pathophysiology has its own 
(autonomous) dynamics, and the exogenous inputs can be various kinds of life events, such as 
stressors or interventions. A linear combination of pathophysiology states (parameterized by B) 
then yields the latent psychopathology. Our model makes the simplifying assumption that all the 
interesting dynamics of disease progression unfold at the level of the brain (pathophysiology), and 
that psychopathology and symptoms are consequences of that underlying pathophysiology. It 
was natural, therefore, to formulate the psychopathology as a (linear) mixture of the underlying 
pathophysiology states. Of course, a more involved non-linear mapping from neural dynamics 
to psychopathology could be entertained when comparing more fine-grained and mechanistic 
DCMs in the future. Finally, the latent psychopathology is transformed to measurable/observable 
symptoms through a logistic function parameterized by u. 

Figure 1 The graphical model 
and definition of dynamics. 
Orange empty circles (dashed) 
denote time-invariant 
parameters; deep blue empty 
circles (solid) denote time-
variant variables whereas the 
deep blue filled circle denotes 
a time-variant observable/
measurable variable; letters in 
light blue denote parameters 
whose values are allowed to 
vary in the current study. Level 
3 models exogenous inputs, 
such as stressors, v(t) at time 
t. This is defined as a general 
linear model with a design 
matrix D (fixed) encoding a 
discrete cosine transform (DCT) 
basis set, with associated 
parameters C. Here we use the 
notation Dt to indicate row t of 
matrix D. Level 2 models the 
dynamics of pathophysiology 
x(t) as a Lorenz attractor 
(a set of 3 differential 
equations) with parameters 
A. A linear transform 
yields psychopathology 
y(t) parameterized by A. 
Finally, level 1 transforms 
psychopathology to observed 
symptoms s(t) in the range [0 
1] which was the unit of the 
actual measurements.
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The priors over the parameters were specified as a multivariate normal density. As is general 
practice in dynamic causal modeling, these priors are relatively uninformative; thereby enabling (i) 
the data to constrain posterior estimates and (ii) the DCM to explain of a wide range of trajectories. 
A key aspect of these priors is that they generally enforce positivity through the use of lognormal 
priors; in other words, for example, rate and time constants are modelled as log constants, with a 
normal or Gaussian prior. This means the prior variance constrains proportional variation, where 
uninformative priors would allow changes over an order of magnitude; and tight priors allow 
changes from prior expectations of a few percent. See the Supplementary materials for MATLAB 
code implementing this DCM structure, including the specification of the priors (in which the prior 
expectation of the parameters is specified in the MATLAB variable pE and the prior covariance 
matrix is specified in variable pC).

EMPIRICAL DATA.

Data for this study were derived from the Suffolk County Mental Health Project, an epidemiologic 
study of first-admission psychosis (Bromet et al., 1992; Kotov, Fochtmann, et al., 2017). Patients 
were recruited from the 12 psychiatric inpatient units of Suffolk County, NY, between 1989 and 
1995. Inclusion criteria were first admission either current or within six months, clinical evidence 
of psychosis, ages 15–60 years old, IQ > 70, proficiency with English, and no apparent general 
medical etiology. The study was approved annually by the institutional review boards of Stony 
Brook University and the participating hospitals. 

Face-to-face and phone assessments were conducted by master’s level mental health 
professionals every three months. Medical records and interviews with significant others were 
also obtained throughout the follow-up. These detailed data allowed raters to chart symptom 
course for 48 months following first admission (Kotov et al., 2013). This furnished ratings 
for severity of psychosis, mania, and depression (0 = no symptoms, 1 = subthreshold or full 
symptoms) in every week of the interval. As the goal of the current paper was to establish the 
methodology—rather than answering a clinical question—only a subset of subjects (N = 10) 
was selected (randomly) from this study. After excluding one subject with a limited number 
of assessments (< 50 available data points), nine subjects were included in the subsequent 
analyses. Analyzing data from these nine subjects allowed us to both capture diverse clinical 

SYMBOL INTERPRETATION

s(t) A vector [s1(t); s2 (t); s3(t)] indicating time-variant symptom scores that are bounded between 0 and  
1: s1(t)- psychosis, s2 (t)– depression, s3(t) – mania. The transformation from y to s is parameterized by u.

y(t) A vector [y1(t); y2 (t); y3(t)] indicating the time-variant latent psychopathology. The mapping from x 
to y is parameterized by B.

x(t) A vector [x1(t); x2 (t); x3(t)] indicating the latent time-variant pathophysiology state. Values at each 
time point are determined by the Lorenz system of differential equations (Figure 1). Parameterized 
by A and τ.

v(t) A 1-by-T vector. Exogeneous inputs. Output of a DCT.

T A time-invariant scalar. The number of assessment points. Determined by the number of available 
data points in the empirical or simulated data.

A A time-invariant vector [a1; a2; a3]. Lorenz attractor parameters. In the current paper, a1= 10, a3 = 1. 
Only a2, namely the Rayleigh parameter, is a free parameter.

B A time-invariant 3-by-3 matrix. The weights of the linear combination, mapping from x to y. In the 
current paper, b1,3, b2,2, b3,1 were fixed at 0.

C A 1-by-8 vector. Coefficients of the DCT parameterizing exogenous inputs.

D The design matrix of the cosine discrete function of time.

x A time-invariant vector [x1(0); x2 (0); x3(0)], indicating the initial values of the pathophysiology states.

u A time-invariant vector [u1; u2; u3]. Thresholding the symptom scores from psychopathology. In the 
current paper, they are fixed at 1 (i.e., u1 = u2 = u3 = 1).

τ A time-invariant scalar. Time constant of dynamics.
Table 1 Glossary.
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trajectories and allowed us to examine each subject individually. These subjects were selected 
to represent a variety of distinct clinical trajectories typically seen in psychotic disorders. All 
patients experienced a psychotic episode, which was brief for five cases, recurring for one case, 
and chronic for three cases. Depressive episodes were observed in six cases and absent in three 
cases. Manic episodes were present in five cases and absent in four cases. Psychosis was limited 
to mood episodes in five cases and occurred outside mood episodes in four cases. Please see 
Supplementary Figure 1.

DYNAMIC CAUSAL MODELING (DCM)

Demonstrating model flexibility

We first ensured that the model could explain various types of clinical trajectories, demonstrating 
its flexibility. To this end, we conducted model-fitting (model inversion) using nine subjects’ 
empirical data. Model inversion entails finding the posterior probability distribution over the model 
parameters using standard variational Bayes methods, given each subject’s data [specifically, 
we used the Variational Laplace model estimation scheme: (Friston et al., 2007; Zeidman et al., 
2022)]. The parameters that were allowed to vary—to explain between subject variations in 
clinical trajectories—are written in blue text in Figure 1 (also see Table 1). In brief, the parameters 
that were allowed to vary were (i) the key parameter governing pathophysiological dynamics (the 
Rayleigh parameter, a2), (ii) its starting values, x(0), (iii) the mapping from pathophysiological to 
psychopathological states, b, (iv) the overall time or rate constants of pathological changes τ, 
and finally (v) the variable influencing the exogenous inputs, but this variable is not of particular 
interest in the current study.

There were two special aspects to this model fitting. First, because we are dealing with a highly 
nonlinear system, we had to account for local maxima during model inversion. This was addressed 
using a multi-start algorithm. The multi-start procedure worked as follows. The prior expectation 
for the parameters was perturbed by a small random variate (sampled from a multivariate normal 
density, with a standard deviation set to a quarter of the corresponding prior). The model was 
then estimated, and the log evidence (free energy) was recorded. This procedure was repeated 
eight times, where each time the posteriors of the best model found thus far were used as the 
priors. Finally, the model with the highest evidence (free energy) was retained. Supplementary 
Figure 3 illustrates the effects of this multi-start procedure for a typical subject, for whom all 
eight model inversions were broadly similar in terms of the Rayleigh parameter (ranging between 
17.52 and 18.08). In other words, by initializing the posterior parameter estimates in multiple 
basins of attraction of multiple local maxima, we could identify the model with the greatest 
evidence (i.e., variation free energy or marginal likelihood). In this way, we increased the chance 
of identifying the global maxima. Second, it was necessary to use a particular kind of feature 
selection that converted discrete symptom scores into continuous variations in amplitude. The 
requisite smoothing of empirical timeseries used a Gaussian convolution in time (FWHM of eight 
measurements, using the MATLAB code spm_conv(data,8,0)), applied both to the data and model 
predictions, much in the same way that a link function converts a general linear model into a 
generalized linear model. 

To empirically assess whether the current model setup was overly expressive, using Parametric 
Empirical Bayesian (PEB) model comparison, we did an automatic search and examined whether 
any of the parameters within the A and B matrices can be “turned off” at the group level.

Demonstrating face validity of parameter estimation

Next, we evaluated the face validity of parameter estimation by simulating data using the model 
and ensuring the parameters used to generate the data could be recovered. The empirical data 
from the nine human subjects were treated as archetypes of distinct pathology and the ensuring 
parameters were used to simulate nine groups of virtual subjects (12 subjects per group, n = 
9 × 12 = 108 synthetic subjects in total). The parameters of the virtual subjects were sampled 
from the posterior probability density over each subject’s parameters (as shown in Figure 3A).  
We then fitted the DCM as above, to estimate new parameters for every virtual subject. To evaluate 
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the face validity of the parameter estimation, we calculated Pearson’s correlation coefficient 
between the values used to generate the simulated data (true values) and the parameter 
estimates (i.e., posterior expectations) across the 108 virtual subjects.

Demonstrating face validity of group-membership

Finally, we evaluated the accuracy with which we could recover the group membership of each 
virtual subject using Bayesian model comparison, With parameter estimates from the 108 virtual 
subjects (from the nine groups) generated above. Using the Parametric Empirical Bayes (PEB) tool 
in the SPM software package (Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian, Seghier, 
et al., 2019), we specified a general linear model, fitted to the subject-specific parameters of all 
subjects. In this between-subjects design matrix, the first group was treated as the intercept of 
the model (i.e., a reference group), and dummy variables (with binary regressors) were included to 
encode membership in the remaining eight groups (Figure 4A).

We inverted this model and estimated its log evidence, as approximated by the variational free 
energy. This scores the quality of the model; namely, the log probability of having seen the group-
level data, given the between subject or group model. In an empirical setting, a model of this form 
enables one to test for differences in parameters between subjects, due to diagnosis or clinical 
measures. Here, with simulated data, we used it to evaluate the confidence with which we could 
distinguish subjects in different groups. For each virtual subject, we changed the design matrix to 
assign the subject to group one, group two, etc. We fitted each model to the data and recorded 
the free energy. Finally, we used Bayes rule (technically, a softmax operator) to convert from the 
log evidence to the posterior probability for each model. This produced a posterior probability over 
group membership for each virtual subject, enabling the construction of a confusion matrix, whose 
elements correspond to the probability that a subject from a particular group (rows) would be 
classified as belonging to each group (columns). Clearly, if the model was identifiable, we would 
hope to see that the greatest posterior probability for each subject corresponded to the group to 
which that subject belonged.

Leave-one-out cross validation for group membership

The above analyses concern hypothesis testing, i.e., identifying the relative evidence for subjects 
belonging to one group versus another. Next, we estimated the ability of the model to predict out 
of sample, by asking how likely is it that a new subject could be correctly classified, i.e., assigned 
to the correct group. Here, we first used 24 virtual subjects from two arbitrarily chosen groups (12 
subjects in each group as mentioned above) and revisited the between-subject analyses above to 
illustrate its predictive validity: asking whether knowing a new subject’s parameters (specifically, 
their Rayleigh parameter) would be sufficient to determine which of two groups they were sampled 
from (e.g., group 1 or group 5). We fitted (i.e., trained) a group-level model, as above, to all virtual 
subjects except one, who was “left out”. We then predicted the left-out subject’s group allocation 
(e.g., 0 = group 1, 1 = group 5) on the basis of the likelihood the parameters were sampled from 
the respective groups. This process was repeated with each subject left out in turn. We then repeat 
the same procedure for all 36 possible pairs of groups.

Data and code availability

The scripts for simulation and model inversion are available in the online Supplementary and upon 
request.

RESULTS
MODEL FITTING TO EMPIRICAL SYMPTOM DATA DEMONSTRATES FLEXIBILITY

Following model inversion, we observed a close correspondence between the predicted symptom 
scores and the empirical symptom scores for all subjects (Figure 2A & Supplementary Figure 1), 
demonstrating that the DCM is sufficiently expressive to fit a variety of clinical trajectories. These 
trajectories range from a single episode with an effective recovery, through to fluctuations in 
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symptom expression, over cycles, with an itinerant aspect. The corresponding estimated latent 
variables are shown in Figure 2B and Supplementary Figure 2. Model fitting took 38 to 99 sec for 
each participant when using a MacBook Air M1 model with 16 GB memory.

The estimated (free) parameters from the above model inversion (Figure 2A) evince some notable 
features: the Rayleigh parameter, A2, was largest for subjects 5 and 7, and this was reflected in 
their fluctuating (cyclical) dynamics (Figure 2B and Supplementary Figure 2). The starting values 
for the pathophysiological states x were generally consistent across subjects, except for subject 
5 for whom x1 and x2 started at a lower value, which could indicate a less symptomatic “disease” 
trajectory. The time constant τ was highly consistent across subjects, whereas the B parameters 
that mapped from “pathophysiology” to “psychopathology” varied substantively across subjects. 
When examining whether any parameters in the A or B matrices could be turned off, Bayesian 
model comparison results showed that one parameter in the B matrix could be safely fixed to 0 
(Supplementary Figure 4).

FACE VALIDITY OF SUBJECT-LEVEL PARAMETER ESTIMATION

Figure 3B shows the estimated parameters from all 108 virtual subjects plotted against the 
parameters used to generate their data. All parameters were recovered with a high degree of 
accuracy, as reflected by the Pearson’s correlation coefficient (r > 0.76). The accuracy was less for 
the time constant parameter; however, this parameter only varied over a very narrow range. As 
expected, large generative parameters were pulled back towards their prior expectations, due to 
the use of Gaussian shrinkage priors.

Figure 2 Model fitting 
results. A. Estimated and 
actual symptom scores. The 
estimated symptoms (dashed) 
overlaid on the empirical 
symptoms (solid) for three 
subjects. Each row corresponds 
to a different kind of symptom 
score (psychosis, depression 
and mania). B. Estimated 
latent variables. For the same 
three subjects, the estimated 
exogeneous inputs, the 
pathophysiology trajectory 
(the Lorenz attractor) and the 
psychopathology are plotted 
from bottom to top. For the 
pathophysiology state, the blue 
dot marks the initial state of 
the trajectory in the state space 
defined by (x1,x2,x3).

Figure 3 Subject-level 
parameter estimation and 
recovery. A. Estimated 
parameters. These bar 
graphs report the estimated 
parameters from the model 
fitting using nine subjects’ 
empirical data. Blue bars are 
posterior expected values and 
error bars are 90% credible 
intervals (the interval within 
which the parameter falls with 
0.9 probability). B. Face validity 
of the parameters. Parameter 
values used to generate 
simulated symptom data were 
sampled from the posterior 
densities shown in panel A. 
This plot shows the estimated 
parameters from all 108 virtual 
subjects plotted against the 
parameters used to generate 
their data. Each dot is a virtual 
subject, the dashed line is the 
diagonal, and the red solid line 
is the line of best fit. R values 
denotes Pearson’s correlation 
coefficients. 
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FACE VALIDITY OF GROUP-MEMBERSHIP

The confusion matrix in Figure 4B shows the inferred group membership for each of the 108 virtual 
subjects. Almost every subject was assigned to the correct group, demonstrating that they could 
be distinguished with high confidence. The exceptions were mainly subjects in group eight, the 
majority of whom were mis-assigned to group four (n = 5), followed by groups one (n = 2) and 
three (n = 1). One subject in group four was mis-assigned to group eight. 

Finally, leave-one-out cross-validation using the 24 virtual subjects from groups 1 and 5 (Figure 4C) 
showed a highly significant out-of-samples correlation between the estimated group membership 
and the actual group membership, demonstrating that the effect size was large enough for the 
Rayleigh parameter to have clinical relevance (in this simulation). Visual inspection revealed 
that only one out of 24 virtual subject was not correctly classified. Figure 4D shows the out-of-
samples correlations for all 36 possible group pairs. Out of the 36, 30 pairs had a moderate or high 
correlation (correlation coefficient > 0.4).

DISCUSSION
The time course or trajectory of symptoms contains crucial information about an illness, and 
hence has been indispensable for nosology research. The current study introduces a nonlinear 
dynamic (i.e., state space) model that is capable of elucidating the underlying processes that give 
rise to symptom trajectories. By applying DCM to timeseries of psychotic and mood symptoms—
tracked over 48 months following first admission with psychosis—we demonstrated the potential 
of this approach for a computational nosology. Specifically, we have demonstrated the ability of 
this hierarchical DCM to explain a variety of clinical trajectories observed in psychotic disorders. 

Figure 4 Assessment of model 
and group identifiability. A-B. 
Group membership recovery 
results. Assessment of model 
and group identifiability. A-B. 
Group membership recovery 
results. Panel A depicts the 
108 subjects × 9 groups design 
matrix (blue = 0, yellow = 1), 
used in the hierarchical linear 
regression model (PEB) to 
test for group membership. 
Panel B depicts the posterior 
probability of the estimated 
group membership ranging 
from 0 (blue) to 1 (yellow). Each 
row of this panel is the result of 
a model comparison, where for 
each subject, nine PEB models 
were compared in which the 
subject was assigned to group 
1…9. Coloured lines on the 
off-diagonal elements indicate 
mis-classification of subjects. 
C. Illustration of leave-one-out 
cross-validation, applied to 
predicting whether subjects 
belonged to group 1 or group 
5. The true group allocation 
parameter is on the horizontal 
axis and the estimated group 
membership parameter is on 
the vertical axis. D. Leave-
one-out cross-validation 
results for all 36 group pairs. 
The correlation coefficients 
between the group allocation 
parameter and the estimated 
parameter are displayed (black 
text for values > 0.4). 
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Then, using numerical analyses, we demonstrated that a key parameter influencing the cyclicity 
of latent dynamics can be reliably recovered at the subject-level. Finally, at the group-level, we 
showed that group membership—based upon specific patterns of parameters—of virtual patients 
can be recovered. This speaks to the identifiability of the model, given realistic data.

The DCM we employed here is a 3-level generative model. Using a state space model of this 
sort departs from existing methods for analysis of time course data. Existing approaches either 
estimate the parameters of static models, such as the intercept and slope of the trajectory, or 
capture superficial dynamics among data using network models, with no model of the underlying 
latent pathological states generating those data. In DCM, the dynamics evolve at the level of the 
underlying disease process, which determine the pattern of symptoms over time. These latent 
dynamics not only offer a parsimonious account of observed symptoms, but also reveal time-
invariant characteristics of latent processes that differ among patients. These characteristics can 
be used to create a mechanistic nosology (i.e., classify patients according to deep characteristics 
of their course), forecasting of illness course and response to medications, as well as targets for 
etiologic research. The DCM approach therefore provides a natural scaffold that can be used to 
investigate biophysiological and psychological factors whose interactions lead to the manifested 
symptom trajectories. The 3-level DCM provides a fairly expressive model that allows one to infer 
latent processes that govern illness time course, which in turn can be targets for psychophysiology 
research. As noted earlier, when describing the current 3-level DCM, we tentatively used 
“pathophysiology” and “psychopathology”, following the previous theoretical work (Friston et al., 
2017). We envisage that supplementing DCM with likelihood models for other kinds of data—
e.g., neurophysiological, pharmacological and psychophysical—may enable one to fine grain and 
establish the nature of these pathophysiological and psychopathological latent states. 

Inspecting the modelled latent variables can provide insights into how each subject’s model 
explained their data. For instance, in Figure 2, we can see that subject s1 had both psychosis and 
depression which resolved at the same time, early in the study period. This was explained by the 
model in terms of an exponential reduction in their psychosis and depression psychopathology 
latent variables, in the absence of exogenous inputs. By contrast, subject s9 had only psychosis, 
which persisted longer before resolving. The model explained this symptom trajectory differently, 
in terms of an exogenous input (i.e., a life event), which drove the psychopathology latent variable. 
Why was exogenous input estimated to be important for one subject but not the other? We can 
answer this from several perspectives. First, when fitting each model, parameter values are chosen 
that maximize the free energy. The free energy can be decomposed into the accuracy of the model 
minus its complexity, where complexity is how far the parameters have diverged from their priors 
(the KL-divergence). Thus, after equating for accuracy, solutions will be chosen that are as simple 
as possible, using the fewest effective number of parameters. From this perspective, whereas s1’s 
symptoms could be explained in terms of regular fluctuations in psychopathology states alone, 
this was insufficient to explain s9’s symptoms, and the added involvement of exogenous inputs 
was required. In other words, the added complexity cost of invoking exogenous effects was offset 
by an increase in accuracy. Second, during model fitting, there are likely to be local maxima in 
the landscape of parameters, which can cause different subjects to end up in different local 
maxima. To mitigate this, we deployed a multiple-starting scheme, where eight different starting 
sets of parameters were specified per subject, and the best solution was retained. Nevertheless, 
subjects s9 and s1 may still have fallen into distinct local maxima, favouring solutions with and 
without exogenous inputs respectively. A standard way to address this would be to estimate every 
subject’s parameters (using a multi-start scheme if desired), then re-estimate all subjects using 
the group average parameters as a starting point (Friston et al., 2015; Litvak et al., 2015). This 
generally ensures all subjects converge to the same local optimum, providing more consistent 
solutions (this is implemented in the SPM MATLAB function spm_dcm_peb_fit). Third, the model’s 
propensity to explain effects in terms of endogenous dynamics relative to exogenous inputs could 
be optimised, by adjusting appropriate prior precisions. For example, a higher prior precision of a 
parameter increases the complexity cost of that parameter deviating from its prior expectation. 
Prior precisions would then be optimised under (usually uninformative) hyperpriors.
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Effects of specific medications, stressors, and triggers can be studied directly within the DCM 
framework. These factors can be modeled as known exogenous inputs, which goes beyond the 
scope of the present study. Modeling known inputs could identify symptom trajectories that 
respond to one drug versus another, and thus be used to forecast treatment response based on 
symptom history of a patient. Also, DCM can clarify how these factors modulate the illness (Friston 
et al., 2017). For example, it could be used to ask whether dopamine D2 antagonists increase 
the threshold at which psychotic symptoms manifest or whether they rather blunt fluctuations 
in psychotic symptoms, as both of these mechanisms can produce symptom remission. A nice 
example of this kind of application of DCM can be found in the study of epilepsy, where the 
temporal evolution of seizures has been captured as trajectories through a space of neural model 
parameters (Rosch et al., 2018).

In the current example, we allowed a subset of the parameters in the DCM to vary over subjects, 
focusing on the Rayleigh parameter, given its key role in underwriting the cyclicity of trajectories, 
which is of high importance in clinical research. Varying this parameter can result in drastically 
different cyclicity patterns. For future studies, one could consider combinations of free parameters, 
depending on the nature of the data and the research questions. For instance, instead of focusing 
on the Rayleigh parameter in A, researchers may allow the parameters in the B matrix to vary 
across individuals. Such a choice could be used to test individual differences in the mapping from 
psychophysiology to psychopathology, given the same pathophysiology states. Crucially, the 
choice of whether to allow a parameter to vary or not is guided by model comparison and is 
therefore a question of empirical study. More specifically, one would compare models in which 
a certain parameter — or combination of parameters — were free to be informed by the data, 
against models in which they were fixed to default values. If the model evidence increases when 
allowing a parameter to vary, then this is evidence that the parameter in question plays a role in 
explaining symptom expression. If the model evidence decreases, this suggests the parameter 
contributes only to the complexity of the model, without increasing its accuracy. In other words, 
Bayesian model comparison can be used to explore different models defined in terms of which 
parameters are fixed and which parameters are free; automatically fixing or removing redundant 
parameters. In the current study, we illustrated how using automatic searching implemented in 
PEB has identified that one of the parameters in the B matrix can be safely fixed to zero in the 
sample of the 9 subjects. Clearly, this depends upon the nature and quality of the data at hand, 
i.e., for some data simpler models may be optimal and more expressive models may be required 
for other data. 

As mentioned above, a particularly interesting factor to examine, in future research, is the 
exogeneous input. In the current illustrations, this exogenous input was specified as a general 
linear model with a design matrix D comprising a discrete cosine transform basis set. Partly 
constrained by our data, the exogenous input was then inferred from the data. Future studies—
with a detailed assessment of these external events such as interventions and life stressors— 
would enable the exogeneous inputs to be treated as a known variable. Practically, this involved 
specifying priors over the exogenous input, but can be specified with greater or lesser precision. 
Under such circumstances, one can use the current 3-level DCM to investigate how pathophysiology 
and/or psychopathology would vary as a function of known exogeneous inputs and the associated 
nosology mechanisms. 

There are two points worth considering when validating the current model in future research. The 
approach we took to simulation was to generate data from 108 virtual subjects, whose parameters 
were sampled from one of nine virtual groups. We then fitted the model to these simulated data, 
and confirmed accurate recovery of parameters and—most importantly for testing hypotheses—
accurate discrimination of models using Bayesian model comparison. In following this procedure, 
there are challenges of assessing “face validity”. First, counter-intuitively, there may be a set of 
parameters that better explains the data (i.e., with lower complexity) than the parameters that 
were actually used to generate those data, because they afford a better log-evidence. This would 
appear as a failure of face validation, which could lead one to under-estimate the performance 
of the model (Litvak et al., 2019). A second challenge regards parameter selection for simulating 
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data. To validate the estimation of the posterior density (i.e., credible intervals), one may wish 
to use a large number of “ground truths” for data simulation, which are sampled from the prior 
density. This has been referred to as Simulation-Based Calibration (Gelman et al., 2020; Talts et 
al., 2018). This has the advantage of being comprehensive, while having the disadvantage that 
unrealistic data may be generated when relatively uninformative priors are used, as was the case 
here. Hence, we opted to use empirical posteriors as the basis for our simulations, as they ensure 
a level of ecologically validity. 

The approach taken here may be contrasted against state-of-the-art machine learning methods, 
such as variational auto-encoders or deep/recurrent neural networks. Here, our intention was to 
provide tools for scoring the evidence for different hypotheses, where each hypothesis is expressed 
as a generative model of the data. A generative model comprises a likelihood function and a set 
of priors, which are prerequisites for calculating the evidence. For this reason, the models here 
are specified according to the experimenter’s hypotheses, with flexibility where certain processes 
are unknown (e.g., by inferring unknown exogenous inputs using a DCT basis set). For this reason, 
dynamic causal models are readily explainable with a clear—if coarse-grained—interpretation of 
their parameters. By contrast, the priority for machine learning methods tends to be to infer the 
latent structure of some data in order to classify or make predictions; rather than score the model 
evidence or provide explainable parameters. Nevertheless, there are commonalities across our 
approach and deep neural networks. Both seek to infer latent variables that explain the data, 
which are organised hierarchically with increasing levels of abstraction. Similar variational Bayes 
methods as used in DCM form the basis of the variational auto-encoder, where the data are 
mapped to the parameters of a latent probability distribution. Finally, a potentially interesting 
future direction for the model presented here, which is a point of contact between approaches, 
would be to apply amortized inference. This is where a neural network is applied to map between 
the parameters in the DCM and the observed data. This could enable integration of new patients’ 
data without having to re-estimate the full model each time.

We have appealed to the explainability afforded by generative modelling with DCM. This 
‘explainability’ calls for some qualification. We use explainability in the general sense that we 
can explain the data in terms of some latent or hidden causes (i.e., states and parameters of a 
generative model). However, this does not mean that the latent states and parameters can be 
directly mapped onto biophysical quantities. Biophysical explainability requires the model to be 
parameterised in a biologically plausible way—so that one can clearly identify the mapping from 
model parameters to rate constants, connection strengths and other neurobiological constructs. 
In general, this means there is a distinction between biophysical and phenomenological DCMs 
(Pereira et al., 2021), which depends upon the degree of abstraction or course graining of the 
latent states. The current DCM is a phenomenological DCM because it does not commit to 
particular biophysical mechanisms. Rather, it provides the opportunity to summarise a potentially 
complex timeseries in terms of a small number of time-invariant parameters, and thereby offers a 
parsimonious model. The idea then is to associate these parameters with independent measures 
of pathophysiology and psychopathology by examining their correlations over subjects. This use 
of the estimates of DCM parameters to identify the characteristic differences — that speak to 
underlying mechanisms – has been referred to as generative embedding (Brodersen et al., 2014). 
An objective of future research using DCM in the current context is to establish its construct validity 
in relation to schemes such as the Hierarchical Taxonomy of Psychopathology (Kotov, Krueger, et 
al., 2017) and, ultimately, the underlying neurobiology.

Another point for consideration for future research is that when implementing our approach, it 
may be important to evaluate the robustness of the model to the kinds of sampling noise typically 
encountered, and to consider incorporating any such random effects into the model. For instance, 
if patients mis-reported their symptoms, this would change the probabilistic mapping from latent 
psychopathology to symptom scores. In the current model, this mapping is captured by a sigmoid 
function, si(t), whose parameters could be treated as free parameters and optimised, as needed, 
to accommodate random effects of this sort.
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The current study has several limitations. First, the DCM setup in the current study may not be 
apt for all forms of psychopathology. Rather, the current DCM is best regarded as a framework 
for psychiatric hypothesis testing, as described above. Second, people unfamiliar with dynamic 
causal modelling may be asking how one validates the implicit variational procedures and the 
ensuing estimators. In brief, the main usage of dynamic causal modelling is to compare the 
evidence for competing models or hypotheses about how data were caused. This means one 
has to evaluate the model evidence or marginal likelihood of a model, which, in general, is 
an intractable problem. This is why the variational free energy (a.k.a., evidence lower bound) 
was introduced, to convert an impossible marginalisation problem into a tractable optimisation 
problem (Beal, 2003; Feynman, 2018). The alternative to variational Bayes is to relax assumptions 
about the functional form of probability distributions and use sampling; such as in Markov Chain 
Monte Carlo (MCMC) procedures or Approximate Bayesian Computation: e.g., (Rubin, 1984). These 
sampling procedures provide posterior distributions over model parameters. However, they do 
not resolve the intractable problem of evaluating model evidence. Although approximations 
such as the Bayesian and Akaike Information Criteria (and their variants) can be used in the 
context of sampling (Spiegelhalter et al., 2002), they are notoriously poor approximations to 
model evidence; especially in relation to variational free energy (Penny, 2012). Effectively, 
this means that there is no alternative to the variational approach taken by dynamic causal 
modelling, if the agenda is to compare models. Having said this, sampling procedures can be 
useful to confirm the form of the posterior distributions used in dynamic causal modelling: see 
for example (Chumbley et al., 2007; Penny & Sengupta, 2016; Sengupta et al., 2016). Third, 
for demonstration purposes, only a small number of subjects were considered in this report. 
Subsequent papers will apply the methods described in the current report to a larger sample 
size. These application papers will establish empirical priors over the model parameters and 
indeed, the form of the model. In short, this paper can be read as a technical foundation for 
subsequent applications. Empirical results should not be generalized beyond the illustrative 
analyses included here. Forth, we had access to 48 months of illness course that was carefully 
tracked in a longitudinal study, which is difficult to collect. Fortunately, electronic health records, 
mobile monitoring, and experience sampling technologies make it feasible to gather time course 
data needed for the DCM. 

In conclusion, the current study considers the first step in applying DCM, characterized by 
multi-level, dynamic, and nonlinear models, to psychiatric nosology. With both empirical data 
and numerical analyses, we showed that the approach has the potential to elucidate a more 
mechanistic nosology than current heuristic diagnoses. The resulting quantitative classification 
promises to facilitate etiology and pathophysiology research as well as improve the forecasting 
of illness course and treatment response. More broadly, there is a prescient opportunity to apply 
dynamic modeling in psychopathology research, and the current study introduces a set of tools 
that may prove useful in this regard.
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