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ABSTRACT
Computational models of decision making have identified a relationship between 
obsessive-compulsive symptoms (OCS), both in the general population and in patients, and 
impairments in perceptual evidence accumulation. Some studies have interpreted these 
deficits to reflect global disease traits which give rise to clusters of OCS. Such assumptions 
are not uncommon, even if implicit, in computational psychiatry more broadly. However, 
it is well established that state- and trait-symptom scores are often correlated (e.g., state 
and trait anxiety), and the extent to which perceptual deficits are actually explained by 
state-based symptoms is unclear. State-based symptoms may give rise to information 
processing differences in a number of ways, including the mechanistically less interesting 
possibility of tying up working memory and attentional resources for off-task processing. 
In a general population sample (N = 150), we investigated the extent to which previously 
identified impairments in perceptual evidence accumulation were related to trait vs 
stated-based OCS. In addition, we tested whether differences in working memory capacity 
moderated state-based impairments, such that impairments were worse in individuals 
with lower working memory capacity. We replicated previous work demonstrating a 
negative relationship between the rate of evidence accumulation and trait-based OCS 
when state-based symptoms were unaccounted for. When state-based effects were 
included in the model, they captured a significant degree of impairment while trait-based 
effects were attenuated, although they did not disappear completely. We did not find 
evidence that working memory capacity moderated the state-based effects. Our work 
suggests that investigating the relationship between information processing and state-
based symptoms may be important more generally in computational psychiatry beyond 
this specific context.
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INTRODUCTION
Obsessive-Compulsive Disorder (OCD) is characterized by the presence of perseverative, unwanted, 
and intrusive thoughts (obsessions) which can trigger excessive urges to perform certain overt 
actions and covert mental rituals (compulsions). When compared to people with anxiety or unipolar 
mood disorders, individuals with obsessive-compulsive disorder are less likely to be married, more 
likely to be unemployed, and more likely to report impaired social and occupational functioning 
(Abramowitz, Taylor, & McKay, 2009; Torres et al., 2006; Veale & Roberts, 2014). The substantial 
impact that OCD has on functioning can also be seen in studies showcasing an array of cognitive 
and behavioral abnormalities in these patients, including impairments in decision making (Foa et 
al., 2003; Pushkarskaya et al., 2015; Reed, 1976; Sachdev & Malhi, 2005). 

The ability to make effective and timely decisions is a cornerstone of healthy human functioning. 
Computational models have formalized the intuitive idea that decision making involves 
accumulating evidence for and against the options under consideration until a function of this 
evidence reaches a threshold (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Smith & Ratcliff, 
2004; Townsend & Ashby, 1983). A particularly popular exemplar from this class of models is 
the drift-diffusion model (DDM), which applies to decisions with two possible outcomes (Ratcliff, 
1978; Ratcliff & McKoon, 2008). Each decision in the DDM (Figure 1) is modeled as a directed 
Brownian motion toward an upper or lower decision boundary, representing the accumulation of 
noisy evidence in favor of one versus the other option. When the accumulated evidence reaches 
one of the boundaries, the decision is made and the respective response initiated. Several 
parameters describe this process, including: drift rate, which represents the rate of evidence 
accumulation towards either decision boundary; boundary separation, which represents the 
distance between the two decision boundaries; and non-decision time, which represents time 
spent on decision-independent processing. In the perceptual domain, this model has been 
frequently studied in the context of the dot motion task, where on each trial the participant 
sees an array of dots, and has to decide in which direction the majority of them are moving 
(Gold & Shadlen, 2007; Newsome, Britten, & Movshon, 1989; Ratcliff & McKoon, 2008; Shadlen 
& Newsome, 1996).

Figure 1 Example of a DDM 
Decision Process. The DDM 
describes the accuracy and 
reaction time of decisions 
using a basic mechanism of 
evidence accumulation with 
a drift-diffusion process. In a 
given trial, an individual will 
continuously extract noisy 
sensory evidence from the 
presented stimulus. This noisy 
evidence is accumulated 
over time, pushing a decision 
variable towards one of 
two decision boundaries. 
Once enough evidence has 
been sampled to push the 
decision variable across a 
boundary, a decision is made 
and the respective response 
initiated. This process is 
described by the following 
parameters: drift rate, which 
represents the rate of evidence 
accumulation towards either 
decision boundary; boundary 
separation, which represents 
the distance between the 
two decision boundaries; 
bias, which represents a priori 
bias towards one or another 
decision boundary at the start 
of the trial; and non-decision 
time, which represents time 
spent on decision-independent 
processing.
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Using the DDM and this well-established perceptual decision task, recent studies have 
documented slower rates of evidence accumulation (slower drift rates) both in OCD patients and 
in individuals from the general population reporting high trait levels of symptoms (Banca et al., 
2015; Erhan et al., 2017; Hauser, Allen, Rees, & Dolan, 2017; Marton et al., 2019; Solway, Lin, & 
Vinaik, 2021, but see also Erhan & Balcı, 2017). In addition, these impairments have been found 
to be larger for easier decisions. Relationships such as this between psychiatric symptoms and 
latent parameters of computational models are an important area of study within the field of 
computational psychiatry. However, while studies looking at associations with trait symptom 
measures are common, relationships with state-based symptoms are usually not investigated. 
This leaves unclear whether information processing differences captured in computer-based tasks 
are truly related to longer-term beliefs and behaviors or are more situationally bound.  The work 
looking at OCD-related perceptual impairments has followed this common approach and has 
focused only on trait measures. In contrast, the importance of investigating state effects in OCD 
has previously been described in the neuropsychology literature, where it has been suggested 
that state-dependent impairments may exist and may be epiphenomena of state-based 
symptoms (Abramovitch, Dar, Hermesh, & Schweiger, 2012; Moritz, Hottenrott, Jelinek, Brooks, & 
Scheurich, 2012).

Answering these questions has obvious important implications for treatment development. If 
perceptual impairments are related to longer-term, trait-level symptomatology, then treatment 
may be directed at rescuing those impairments with the reasonable argument that one might 
expect the symptoms to thus improve. On the other hand, if perceptual impairments are actually 
a byproduct of active state-level symptoms, such interventions will likely be ineffective and 
treatment needs to focus instead on other upstream factors.

Given the correlation between trait and state symptoms, it is important to test whether one or 
both are related to information processing differences. Our primary goal in the present work 
was to begin to ask this question for computationally defined perceptual deficits related to 
OCS. However, similar questions may also be warranted in other domains within the purview of 
computational psychiatry.

A second question of interest concerned whether differences in working memory capacity 
moderated drift rate impairments. If impairments are secondary to state-based effects as some 
have previously suggested (Abramovitch et al., 2012; Moritz et al., 2012), it is possible that they 
may be reduced in individuals with larger working memory capacities, who have more resources to 
expend on processing both their symptoms and the task at hand. To ask both sets of questions, we 
had participants complete the dot motion decision making task as in previous work on perceptual 
deficits (Banca et al., 2015; Erhan et al., 2017; Hauser et al., 2017; Marton et al., 2019; Solway et 
al., 2021), the OSPAN task (Turner & Engle, 1989), and trait and state assessments of obsessive-
compulsive symptoms.

METHODS
PARTICIPANTS

Data were collected online using Amazon’s Mechanical Turk (MTurk) (Buhrmester, Kwang, & 
Gosling, 2016). Eligible participants were at least 18 years of age, had a US billing address, and 
had a prior task approval rating of at least 95%. Upon study completion, included participants 
were paid $5 plus a bonus based on overall accuracy in each task (max bonus = $1.00; M = 
$0.76, SD = 0.19). All participants provided electronic informed consent in accordance with 
procedures approved by the University of Maryland, College Park Institutional Review Board 
(#1155349).

Several a priori exclusion criteria were applied to ensure data quality in line with standard practices 
and suggestions for studies using MTurk (Crump, McDonnell, & Gureckis, 2013; Gillan, Kosinski, 
Whelan, Phelps, & Daw, 2016). Participants that did not pass a comprehension quiz following 
the instructions and task demo could not continue. Those that completed the experiment were 
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sequentially excluded if: their total accuracy across all trials of the dot motion task was  below 
55% (n = 69), their accuracy on the processing component of the OSPAN (mathematics problems) 
was below 85% (n = 16, in addition to those excluded at the previous step) (Conway et al., 2005), 
they answered either of two questionnaire catch-items incorrectly (n = 25), or they completed 
a 12-item catch trial in the OSPAN task without error (to catch cheating; n = 16). Data from 150 
participants were included in the analysis (out of 276 subjects who submitted data) . Dot motion 
trials with implausibly fast (<250ms) or unusually slow (>15 sec) reaction times were discarded. 
See Supplement for additional details. 

TASKS

To assess perceptual decision making, we used the well-studied random dot-motion task (RDMT) 
(Gold & Shadlen, 2007; Newsome et al., 1989; Ratcliff & McKoon, 2008; Shadlen & Newsome, 
1996). Participants were asked to determine the primary direction of motion of a dynamic 
kinematogram consisting of small white dots moving within a circular aperture in the middle of a 
black screen. Trials consisted of varying levels of motion coherence either leftward or rightward; 
coherence levels were set to 7.5% (“High uncertainty”), 20% (“Medium uncertainty”), and 45% 
(“Low uncertainty”), and presented in random order across trials.  To assess  working memory 
capacity, we used the well-established Operation-Span (OSPAN) task. Within each trial, participants 
were shown a series of simple math problems alternating with individual letters. Participants were 
asked to verify the correctness of each presented math problem, and to remember the letters in 
the order presented for later recall at the end of the trial. Individual working memory span scores 
were calculated using the partial-credit unit scoring method, in which participants receive credit 
for the percentage of items recalled in correct serial position per set—these are then averaged to 
produce the total partial unit score (for more details, see Conway et al., 2005). See Supplement 
for additional details.

QUESTIONNAIRES

Consistent with prior work on the relationship between perceptual decision making and OCD 
symptoms (Erhan & Balcı, 2017; Hauser et al., 2017), we used the well-validated Padua Inventory-
Washington State University Revision (PI-WSUR) (Burns, Keortge, Formea, & Sternberger, 1996) as 
one assessment of trait-level OCS (Rubio-Aparicio et al., 2017). The PI-WSUR consists of 39-items 
comprising five symptom-cluster subscales: contamination obsessions and washing compulsions, 
dressing/grooming compulsions, checking compulsions, obsessional thoughts of harm to self/
others, and obsessional impulses to harm self/others. The format of this measure, however, does 
not lend itself well for an assessment of state-level symptoms during a lab based experiment—
the two biggest challenges being that it was not originally designed to consider the impact 
of symptoms over any specific time frame, and that it is content-specific and includes many 
instances of obsessions and compulsions which would not be applicable during an experiment 
(e.g., dressing and grooming). The developers of the PI-WSUR reported total scores for both 
normative and OCD patient samples (normative: M = 22, SD = 16; patients: M = 55, SD = 17) (Burns 
et al., 1996).

Another popular, well-validated measure of obsessive-compulsive symptoms is the Yale-Brown 
Obsessive Compulsive Scale—Self-Report (Y-BOCS-SR)(Baer, Brown-Beasley, Sorce, & Henriques, 
1993; Federici et al., 2010; Goodman, 1989; Steketee, Frost, & Bogart, 1996). The Y-BOCS-
SR contains 10-items to assess the severity of obsessions and compulsions with five rating 
dimensions: time spent/occupied, interference with functioning, degree of distress, resistance, 
and control (i.e., success in resistance). The standard Y-BOCS-SR is designed to assess symptoms 
over the past week and asks the individual to rate their experience of obsessions and compulsions 
at large regardless of the specific content of their symptoms (e.g., contamination versus harm). 
Prior studies using the Y-BOCS-SR have reported total scores for both non-clinical and OCD patient 
samples (normative: M = 5, SD = 5; patients: M = 21, SD = 5) (Steketee et al., 1996) To assess the 
severity of state-level obsessions and compulsions (i.e., during the RDMT and OSPAN tasks), we 
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made minor modifications to the Y-BOCS-SR, replacing the wording for each question to indicate 
the participant consider their symptoms specifically “During the Dots and Math/Letters tasks” 
(whereas, in the standard version this is specified as “In the past week”). We refer to this version 
as “Y-BOCS-SR—State”. We asked participants to complete  both the standard Y-BOCS-SR and the 
Y-BOCS-SR—State. See Supplement for additional details.

HIERARCHICAL DRIFT-DIFFUSION MODELING OF THE RDMT

The drift-diffusion model (DDM) is widely used to explain the latent dynamics of two-choice 
decision-making (Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Smith & Ratcliff, 
2004). The model has been extensively studied in a number of different contexts, including the dot 
motion task used here (Gold & Shadlen, 2007; Heekeren, Marrett, & Ungerleider, 2008; Newsome 
et al., 1989; Ratcliff & McKoon, 2008; Shadlen & Newsome, 1996). Raw aggregate behavioral 
measures, such as accuracy and reaction time, arise from the decision process described by the 
model. Considering individual components of processing and model parameters allows for both 
more specific questions to be asked and increased statistical power (White, Ratcliff, Vasey, & 
McKoon, 2010). In the current study, we employed hierarchical Bayesian parameter estimation 
of the basic form of the drift-diffusion model (without across-trial variance, see Lerche & Voss, 
2016), using Markov chain Monte Carlo to compute posteriors for group-level parameters while 
also accounting for individual differences.  

All fitted models were specified with the following free parameters: drift rate (i.e., rate of evidence 
accumulation towards either decision boundary), boundary separation  (i.e., distance between the 
two boundaries, or amount of evidence necessary to decide), and non-decision time (i.e., time spent 
on decision-independent processing, such as initial perceptual encoding and motor execution). Drift 
rate and boundary separation were allowed to vary by subject and trial uncertainty level (i.e., dot-
motion coherence), and were simultaneously regressed on the variables of interest (questionnaire 
scores and working memory span). Non-decision time varied by subject only without additional 
regressors. The DDM also allows for an a priori bias for the drift process starting point relative to 
the two decision boundaries. All models assumed an unbiased starting point, given that left/right 
responses in the RDMT were counterbalanced. We fit and present a series of progressively more 
complete regression models. This approach is not meant to suggest that we advocate comparing 
across these models. The final model, which includes all regressors, simultaneously asks all of the 
questions of interest and is the one we defer to for answers. However, given that previous work 
has looked at trait effects alone, we began by considering trait effects only and tested whether we 
could replicate this work in the context of previous assumption. We then built up from this starting 
point. See the Supplement for additional details.

STATISTICAL ANALYSES

Dependent samples Welch’s t-tests were used to compare the accuracy and reaction times 
of different trial uncertainty levels in the RDMT. Hierarchical drift-diffusion models were 
implemented with Stan, using the RStan package in R (R Core Team, 2019; Stan Development 
Team, 2018). Effects reported are the posterior median value and the median 95% credible 
interval (CI) of the regression coefficients in our models. We considered an effect “significant” if 
its median 95% CI did not include 0. To test whether two effects were “significantly” different, 
we subtracted their posterior distributions from one another and assessed whether the 95% CI 
of the resultant distribution did not include 0. All independent variables in the regressions were 
z-scored.

RESULTS
The study sample comprised 150 adult participants. Table 1 lists the sample’s demographics and 
characteristics (OSPAN and questionnaire scores).
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TOTAL MIN–MAX

Age, Years 39 ± 12 19–71

Sex

Female 73 (49) –

Male 77 (51) –

OSPAN 0.88 0.29–1

PI-WSUR

Total 22 ± 22 0–121

Checking 8 ± 8 0–34

Contamination 9 ± 9 0–38

Grooming 1 ± 3 0–12

Obsessional Impulses 1 ± 4 0–30

Obsessional Thoughts 3 ± 4 0–21

Y-BOCS-SR

Total 7 ± 6 0–22

Obsessions 4 ± 4 0–13

Compulsions 3 ± 3 0–13

Y-BOCS-SR—State

Total 3 ± 5 0–18

Obsessions 2 ± 3 0–10

Compulsions 2 ± 2 0–16

Distributions of total scores for the PI-WSUR, standard Y-BOCS-SR, and our modified Y-BOCS-SR—
State questionnaires are presented in Figure 2. The PI-WSUR scores ranged from 0 to 121 with a 
mean of 22 and standard deviation of 22. The standard Y-BOCS-SR scores ranged from 0 to 22 
with a mean of 7 and standard deviation of 6. The modified Y-BOCS-SR—State scores ranged from 
0 to 18 with a mean of 4 and standard deviation of 5. Table 2  presents the correlation matrix 
between the questionnaire total scores and OSPAN working memory scores. As an exploratory 
analysis, we also tested the relationships between these variable and age. There were no 
significant relationships between participant age and questionnaire total scores, though there 
was a significant association between age and OSPAN working memory capacity (r = –0.23, t = 
–2.9, p = 0.005).

Basic behavioral data from the RDMT are presented in Figure 3, which demonstrates how the 
level of uncertainty (coherence) in the dot motion stimulus affects difficulty. Uncertainty 
levels were as follows: “High” (7.5% coherence), “Medium” (20% coherence), and “Low” (45% 
coherence). Consistent with expectation, higher uncertainty trials in the RDMT were both 
less accurate (High – Med: t(149) = –26.7, p = 1.2 × 10–58; Med – Low: t(149) = –10.6, p = 7.8 
× 10–20) and slower (High – Med: t(149) = 14.4, p = 6.9 × 10–30; Med – Low: t(149) = 14.7, p = 
6.8 × 10–31). 

Applying the drift-diffusion model, there was a consistent main effect of stimulus uncertainty for 
both drift rate and boundary separation across all regression models: the lower the uncertainty, 
the faster the drift rate and the smaller the boundary separation. Table 3 lists these parameters 
and their contrasts for the first model (Model 1, described below), with nearly identical results for 
all other models.

Table 1 Demographics and 
Characteristics of the Sample.

Values are mean ± SD or n (%).

OSPAN, partial unit score for 
letter recall in the Operation 
Span task; PI-WSUR, Padua 
Inventory-Washington State 
University Revision; Y-BOCS-
SR, Yale-Brown Obsessive 
Compulsive Scale Self Report 
standard version; Y-BOCS-SR—
State, Yale-Brown Obsessive 
Compulsive Scale Self Report 
modified to assess state-level 
symptoms experienced during 
completion of experimental 
tasks.
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 OSPAN PI-WSUR YBOCS YBOCS-STATE

OSPAN 1 0.029 –0.002 0.13

PI-WSUR 0.029 1 0.477* 0.312*

YBOCS –0.002 0.477* 1 0.499*

YBOCS-State 0.13 0.312* 0.499* 1

Our first regression model (Model 1) included only the relationship with PI-WSUR score, which has 
been used in prior studies to characterize OCS-related differences in perceptual decision making 
(Hauser et al., 2017; Solway et al., 2021), to test whether we could replicate this work. Model 1 
demonstrated a significant negative relationship between PI-WSUR score and drift rate for easier 
trials (i.e. Low and Medium, but not High, uncertainty level), with a greater negative effect at Low 
compared to Medium uncertainty, and at Medium compared to High uncertainty (Low: β = –0.16 
[–0.23, –0.09]; Med: β = –0.07 [–0.13, –0.01]; High: β = –0.02 [–0.09, 0.05]; Difference of Low – 
Med: β = –0.09 [–0.12, –0.07]; Difference of Med – High: β = –0.04 [–0.06, –0.02]). There were no 
significant effects of PI-WSUR on decision boundary separation. The posterior median estimates 
and 95% CIs for all regressors across all models are shown in Supplemental Table S1.

Figure 2 Distributions of 
Questionnaire Total Scores. 
Distributions of total scores for 
the PI-WSUR, standard Y-BOCS-
SR (“YBOCS”), and our modified 
Y-BOCS-SR—State (“YBOCS-
State) questionnaires. PI-WSUR 
scores ranged from 0 to 121 
(M = 22, SD = 22). YBOCS scores 
ranged from 0 to 22 (M = 7, SD 

= 6). YBOCS-State scores ranged 
from 0 to 18 (M = 4, SD = 5). 

Table 2 Correlations of WM and 
Psychometric Questionnaires.

Notes: * = p < .001 (fdr-corrected). 

OSPAN = partial unit score for 
letter recall in the Operation 
Span task; PI-WSUR = Padua 
Inventory-Washington State 
University Revision; YBOCS = Yale-
Brown Obsessive Compulsive 
Scale Self Report standard 
version; YBOCS-State = Yale-
Brown Obsessive Compulsive 
Scale Self Report modified to 
assess state-level symptoms 
experienced during completion 
of experimental tasks.
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 MEDIAN LOWER UPPER

Drift rate    

Subject, SD 0.41 0.37 0.47

Group, Stim uncertainty level    

Low 1.80 1.73 1.87

Medium 1.20 1.13 1.27

High 0.41 0.34 0.47

Group, Diff between uncertainty levels    

Low – Medium 0.60 0.57 0.63

Medium – High 0.80 0.77 0.82

Boundary separation    

Subject, SD 0.56 0.50 0.63

Group, Stim uncertainty level    

Low 1.93 1.84 2.02

Medium 2.15 2.06 2.24

High 2.45 2.36 2.54

Group, Diff between uncertainty levels    

Low – Medium –0.22 –0.24 –0.20

Medium – High –0.30 –0.32 –0.28

Non-decision time

Subject, mean 0.38 0.36 0.40

Subject, SD 0.13 0.11 0.14

To test whether the standard trait-based Y-BOCS-SR (“YBOCS”) similarly captured performance 
differences, our second model (Model 2) specifically focused on it. Results were similar to Model 
1: a significant negative impact of YBOCS score on drift rate in Low uncertainty trials more so than 
Medium uncertainty trials, and in Medium uncertainty trials more so than High uncertainty trials 
(Low: β = –0.17 [–0.24, –0.10]; Med: β = –0.06 [–0.13, –0.01]; High: β = –0.01 [–0.08, 0.06]; Difference 
of Low – Med: β = –0.11 [–0.14, –0.08]; Difference of Med – High: β = –0.05 [–0.07, –0.03]). There 
were no significant effects of YBOCS on decision boundary separation.

Figure 3 Difficulty in the RDMT 
is Modulated by Uncertainty 
Level of the Motion Stimulus. 
Uncertainty level represents 
motion stimulus coherence 
(Low, 45% coherence; 
Medium, 20% coherence; High, 
7.5% coherence). Medium 
uncertainty trials were more 
accurate than high uncertainty 
trials (t(149) = 26.7, p = 
1.2e–58), and low uncertainty 
trials were more accurate than 
medium uncertainty trials 
(t(149) = 10.6, p = 7.8e–20). 
Similarly, medium uncertainty 
trials had shorter reaction times 
than high uncertainty trials 
(t(149) = –14.4, p = 6.9e–30), 
and low uncertainty trials had 
shorter reaction times than 
medium uncertainty trials 
(t(149) = –14.7, p = 6.8e–31). 

Table 3 Posterior Median 
and Central 95% Credible 
Interval for Main Group-level 
Parameters in Model 1.

Effects are considered 
significant when the median 
95% CI does not include 0. As 
such, all of the effects and 
contrasts listed in Table 2 above 
are significant.
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We next tested whether a state-based measure of obsessions and compulsions, the Y-BOCS-SR—
State (“YBOCS-State”), better explained these differences than the PI-WSUR or the standard YBOCS. 
We fit two models to answer this question, one with the PI-WSUR and YBOCS-State as regressors 
(without the standard YBOCS; Model 3a), and another with the standard YBOCS and the YBOCS-State 
as regressors (without the PI-WSUR; Model 3b).  For Model 3a, YBOCS-State was negatively correlated 
with drift rate in both Low and Medium uncertainty conditions, and as before the relationships were 
stronger in easier than in more difficult conditions (Low: β = –0.24 [–0.31, –0.16]; Med: β = –0.11 [–0.19, 
–0.05]; High: β = 0.02 [–0.05, 0.09]; Difference of Low – Med: β = –0.12 [–0.15, –0.09]; Difference of Med 
– High: β = –0.14 [–0.16, –0.11]). The PI-WSUR showed a reduced, but still significant, negative effect 
on drift rate in Low uncertainty trials only (β = –0.09 [ –0.16, –0.01]) and was no longer significant at 
Medium uncertainty trials. The YBOCS-State effect on drift rate was significantly stronger than that of 
the PI-WSUR effect at Low uncertainty (Difference of YBOCS-State – YBOCS for Low: β = –0.15 [–0.27, 
–0.03], Med: β = –0.09 [–0.21, 0.03], High: β = 0.05 [–0.07, 0.16]). For Model 3b, YBOCS-State was 
negatively correlated with drift rate in both Low and Medium uncertainty conditions (Low: β = –0.25 
[–0.34, –0.17]; Med: β = –0.13 [–0.22, –0.05]; High: β = 0.02 [–0.06, 0.10]; Difference of Low – Med: 
β = –0.12 [–0.15, –0.09]; Difference of Med – High: β = –0.16 [–0.18, –0.13]). Notably, the standard 
YBOCS showed no relation to drift rate at any uncertainty level. This YBOCS-State effect on drift rate 
was significantly stronger than that of the standard YBOCS effect at Low and Medium uncertainty 
(Difference of YBOCS-State – YBOCS for Low: β = –0.23 [–0.37, –0.09], Med: β = –0.15 [–0.29, –0.01], 
High: β = 0.04 [–0.10, 0.18]). Figure 4 shows the posterior median 95% CI estimates for the effects 
in Models 3a and 3b. The contrasts at each uncertainty level between the YBOCS-State effects and 
the YBOCS or the PI-WSUR effects are shown in Figure 5. There were no significant effects of YBOCS, 
PI-WSUR, or YBOCS-State on decision boundary separation in either model.

Figure 4 Posterior Median 
and 95% CI for Model 3a 
and Model 3b Regression 
Coefficients. Panel (A) shows 
parameters for Model 3a; 
Panel (B) shows parameters 
for Model 3b. “Low” = low 
uncertainty trials at 45% dot 
motion coherence; “Med” = 
medium uncertainty trials 
at 20% coherence; “High” = 
high uncertainty trials at 7.5% 
coherence. For each model, 
the following parameters 
are shown for each level of 
stimulus uncertainty: group 
level drift rate (“Drift”); effects 
of subject-level scores on the 
Y-BOCS-SR—State (“YBOCS-
State”), Padua Inventory 
(“PI-WSUR”), and/or the 
standard Y-BOCS-SR (“YBOCS”) 
on drift rate (Drift); group level 
decision boundary separation 
(“Boundary”); effects of 
subject-level scores on the 
YBOCS-State, PI-WSUR, and/or 
YBOCS on boundary separation 
(Boundary). Also shown is the 
group level mean for non-
decision time. The median 
estimate for each contrast’s 
posterior distribution is 
represented by a black dot, and 
the 95% CI is represented by a 
red line. An effect is considered 
significant if the 95% CI does 
not overlap with 0.
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We ran an exploratory confirmation of these two models using a larger sample where we included 
participants regardless of their performance on the dot motion task or the OSPAN task, such that 
the only exclusion criterion was for the questionnaire catch-items.  The rationale here was that, 
although our performance cut off was standard for OSPAN and nominal for the dot motion task, 
this may exclude participants with significant symptoms and impairments. This sample had similar 
demographics (mean age = 38 ± 12, 102 females) as the original sample. Questionnaire total 
score distributions shifted most for the PI-WSUR (mean = 28, sd = 30, range = 0–140), followed 
by slighter changes for the YBOCS-State (mean = 5, sd = 6, range = 0–29) and standard YBOCS 
(mean = 7, sd = 7, range = 0–29). DDM results for both models were similar to our original N = 150 
sample in most respects, except that the PI-WSUR effect in Model 3a was now significant at both 
Low and Medium uncertainty (Low: β = –0.20 [–0.28, –0.11]; Med: β = –0.13 [–0.22, –0.04]; High: β 
= –0.07 [–0.15, 0.02]) and the difference between YBOCS-State was no longer significantly greater 
than that of PI-WSUR at any uncertainty level—though it was still significantly greater than the 
standard YBOCS across all levels.  The posterior median 95% CI estimates for the effects with the 
N = 210 sample can be found in Supplemental Table S2. 

To test the role of working memory in this context, our fourth model (Model 4) included working 
memory span scores from the OSPAN task along with all three questionnaires. Drift rate results 
were largely comparable to Models 3a and 3b for the PI-WSUR, standard YBOCS, and YBOCS-
State. YBOCS-State was negatively correlated with drift rate in both Low and Medium uncertainty 
conditions (Low: β = –0.26 [–0.34, –0.17]; Med: β = –0.14 [–0.22, –0.06]; High: β = 0.02 [–0.06, 0.11]; 
Difference of Low – Med: β = –0.12 [–0.15, –0.08]; Difference of Med – High: β = –0.17 [–0.19, –0.14]), 
the PI-WSUR showed a reduced significant negative effect on drift rate in Low uncertainty trials 
only (β = –0.09 [–0.17, –0.01]) while the standard YBOCS showed no relation to drift rate at any 
uncertainty level. In this model, the effect of YBOCS-State on drift rate was significantly stronger 
than the standard YBOCS effect at both Low and Medium uncertainty (Difference of YBOCS-State – 
YBOCS for Low: β = –0.28 [–0.42, –0.13], Med: β = –0.18 [–0.32, –0.03], High: β = 0.03 [–0.11, 0.18]) 
and stronger than the PI-WSUR at Low uncertainty (Difference of YBOCS-State – PI-WSUR for Low: 
β = –0.16 [–0.29, –0.04], Med: β = –0.10 [–0.22, 0.02], High: β = 0.05 [–0.07, 0.17]). Model 4 further 
revealed that OSPAN score had no significant effect on drift rate nor decision boundary separation 
at any of the stimulus difficulty levels.

Figure 5 Contrasts of YBOCS-
State versus YBOCS or PI-
WSUR Drift Rate Coefficients 
for Models 3a and 3b 
(Posterior 95% CI). “Low” = 
low uncertainty trials at 45% 
dot motion coherence; “Med” 

= medium uncertainty trials 
at 20% coherence; “High” = 
high uncertainty trials at 
7.5% coherence. Differences 
(“Contrasts”) between the 
posterior distribution of the 
drift rate regression coefficients 
for YBOCS-State versus 
PI-WSUR (Model 3a; coral 
color), and for YBOCS-State 
versus the standard YBOCS 
(Model 3b; cyan color) across 
uncertainty levels. Contrasts 
were computed by subtracting 
the corresponding distributions 
from one another. The median 
estimate for each contrast’s 
posterior distribution is 
represented by a black dot, 
and the 95% CI is represented 
by a red line. A contrast is 
considered significant if the 
95% CI does not overlap with 0. 
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To test the hypothesis that a larger working memory span may mitigate the detrimental effect 
of state-based obsessions/compulsions during the RDMT, our fifth model (Model 5) included the 
interaction between OSPAN working memory score and YBOCS-State. There was a significant 
negative interaction effect for Low uncertainty trials, but not Medium or High uncertainty (Low: β 
= –0.11 [–0.21, –0.02]; Med: β = –0.05 [–0.14, 0.04]; High: β = 0.02 [–0.07, 0.11]; Difference of Low – 
Med: β = –0.07 [–0.10, –0.03]; Difference of Med – High: β = –0.07 [–0.10, –0.04]), indicating that a 
larger working memory span actually exacerbated the negative relationship of YBOCS-State score 
and drift rate, contrary to expectation. Other effects were similar to Model 4. Figure 6 shows the 
posterior median 95% CI estimates for the effects in this full model. 

Given findings in the research literature pertaining to age effects on DDM parameters (Theisen, 
Lerche, von Krause, & Voss, 2021), we ran an exploratory analysis building off Model 5 to further 
include the effect of age on both decision threshold and drift rate. Note that while our participants 
displayed wide variation in age as a whole, we still had relatively few people beyond the cutoff 
typically found in aging studies (60/65+), and this analysis is truly exploratory. In this model, 
we also allowed the a priori bias parameter to vary freely. The YBOCS-State effect on drift rate 
remained significant at both Low and Medium uncertainty, and the PI-WSUR was no longer 
significant at any uncertainty level. Age was found to have a significant positive effect on drift rate 
at the Low uncertainty level (Low: β = 0.24 [ 0.17, 0.32]). There was a very slight, but practically 
negligible, main effect of bias for rightward responses at the subject level (β = –0.02 [–0.05, 
–0.004]). Supplemental Table S3 shows posterior median 95% CI estimates for the effects in the 
exploratory model (“Model 5a”).

As an additional exploratory confirmation of the full model (i.e., Model 5) results, we re-ran the 
analyses with relaxed exclusion criteria for the OSPAN task. Specifically, we reduced the requirement 
for accuracy on the processing component (math problems) from 85% to 70% and included 

Figure 6 Posterior Median and 
95% CI for Model 5 Regression 
Coefficients. Effects of subject-
level scores on drift rate. “Low” 

= low uncertainty trials at 45% 
dot motion coherence; “Med” 

= medium uncertainty trials 
at 20% coherence; “High” = 
high uncertainty trials at 
7.5% coherence. The median 
estimate for each parameter/
regression coefficient’s 
posterior distribution is 
represented by a black dot, and 
the 95% CI is represented by a 
red line. An effect is considered 
significant if the 95% CI does 
not overlap with 0.
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participants regardless of their score on the 12-item catch trial. The rationale here, similar to our 
rationale for our exploratory Model 3a/3b analysis, was that although our initial high cutoff for the 
math score was standard for this task, it might exclude participants with significant symptoms and 
impairments. With these changes, the sample size increased to N=177, with similar demographics 
(mean age = 39 ± 12, 87 females) and OSPAN score distribution (mean = 0.87, range = 0.029–1) 
as the original sample. Questionnaire total score distributions changed slightly for the PI-WSUR 
(mean = 24, sd = 24, range = 0–132) and the YBOCS-State (mean = 4, sd = 5, range = 0–25), and 
remained comparable for the standard YBOCS (mean = 7, sd = 6, range = 0–23). DDM results 
were similar to our original N = 150 sample in all respects except that:  the interaction effect 
between OSPAN working memory score and YBOCS-State on drift rate was no longer significant at 
any uncertainty level and the differences between the YBOCS-State and the PI-WSUR effects were 
likewise no longer significant at any uncertainty level (Difference of YBOCS-State – PI-WSUR for 
Low: β = –0.04 [–0.16, 0.07], Med: β = –0.03 [–0.14, 0.08], High: β = 0.03 [–0.08, 0.14]). The YBOCS-
State effects remained significantly stronger than those of the standard YBOCS at both Low and 
Medium uncertainty (Difference of YBOCS-State – YBOCS for Low: β = –0.17 [–0.32, –0.03], Med: 
β = –0.13 [–0.28, –0.006], High: β = –0.02 [–0.16, 0.12]). Supplemental Table S4 shows posterior 
median 95% CI estimates for the effects in the exploratory model with N = 177.

DISCUSSION
In a large general population sample, we examined the relative strength of the relationship 
between state-level and trait-level OCS and the components of perceptual decision making 
defined by the drift-diffusion model. Given prior work (Banca et al., 2015; Erhan et al., 2017; Hauser 
et al., 2017; Marton et al., 2019), we focused specifically on drift rate, a measure of the speed 
of evidence accumulation over time which reflects the quality or precision of stimulus evidence 
entering the decision process (Ratcliff & McKoon, 2008). In a simple model including only the 
PI-WSUR, we found that higher scores on this measure related to slower drift rate on low and 
medium uncertainty trials. This finding is consistent with a majority of prior studies in both OCD 
patients and the general population (Banca et al., 2015; Erhan et al., 2017; Hauser et al., 2017; 
Marton et al., 2019). We then replicated this phenomenon using the Y-BOCS-SR, which is another 
popular trait measure of OCD symptom severity, thereby demonstrating that this finding was not 
sensitive to a particular trait-based measure. The enhanced effect of low objective uncertainty 
contexts aligns with studies showing a similar pattern of impairment for subjective certainty in 
OCD; for example, Stern and colleagues (2013) found that patients provided greater ratings of 
subjective uncertainty for low but not higher uncertainty evidence during a probabilistic reasoning 
task (Stern et al., 2013). Most previous work did not find a relationship between OCD symptoms 
and decision boundary separation for dot motion decisions (Banca et al., 2015; Erhan et al., 2017; 
Hauser et al., 2017; Marton et al., 2019), and our results also replicated this pattern.

However, previous work has not tested whether state-based symptom measures better capture 
perceptual processing differences, leaving it an open question as to whether they represent true 
underlying long-term deficits. Our analysis revealed that state-based symptoms were substantially 
negatively related to drift rate, and it further suggested that these effects were at least 
comparable to, if not larger than, those of trait-based measures. The relationship with state-based 
symptoms remained after we relaxed our exclusion criteria, which allowed for a broader sample 
of participants with higher trait severity scores. In this case, although the difference between 
the Y-BOCS-SR—State and PI-WSUR measures was not significant at any uncertainty level, state 
effects were still significantly stronger than those measured by the standard Y-BOCS-SR. Perhaps 
not surprising, we saw a significant correlation between the standard Y-BOCS-SR and Y-BOCS-
SR—State. The standard Y-BOCS-SR measures symptoms over the past week and is arguably 
less of a “trait” measure than the P-WSUR, which asks about general tendencies. However, this 
does not explain why deficits were significantly more associated with Y-BOCS-SR—State. The less 
consistent significant differences between the effects of Y-BOCS-SR—State and PI-WSUR suggest 
that although state effects account for a significant portion of the negative relationship with drift 
rate, trait effects still carry importance, perhaps especially at lower uncertainty.
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A potential concern with this analysis is that although we made minimal changes to the temporal 
framing of the Y-BOCS-SR to create the state-based measure, its psychometric properties are 
not known compared to the trait measures, and this may impact the results. Although better 
understanding the properties of this modified questionnaire is an important topic for future work, 
it should be noted that we found that it better captured the relationship with drift rate, not worse, 
speaking against reliability concerns. Indeed, there is possibly a greater concern regarding the 
trait-based measures. Although both measures are well-established and the same or similar 
measures were used in previous studies of perceptual deficits related to OCD symptoms, asking 
individuals to comment on past behavior can be unreliable and can potentially result in trait 
effects being misestimated. It would be of interest to repeat this work while using journaling or 
more modern smartphone-based momentary assessment techniques that measure symptoms in 
the wild repeatedly over long time scales. 

As previously noted, trait-based effects on evidence accumulation have been replicated in both 
patient and non-patient samples (Banca et al., 2015; Erhan et al., 2017; Hauser et al., 2017; Marton 
et al., 2019), suggesting that this phenomenon is not sensitive to formal diagnostic classification. 
Even so, one limitation worth acknowledging is that our findings of significant state-based effects 
are in a non-clinical general population sample with relatively lower symptom scores than would 
be expected in OCD patients. Although we suspect the effect of state-based symptoms might be 
even greater in a clinical OCD sample, this remains a question for future work. Another limitation 
is the lack of specificity of our state results. State-based OC symptoms are also likely related to 
other factors that could drive deficits, such as general nervousness and unease. It would be fruitful 
to further test the specificity of these results against other state measures such as the STAI-S 
(Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983).

An obvious question is how one might interpret the results obtained here from a more mechanistic 
perspective of the disorder. We attempt to avoid drawing strong conclusions from correlational data, 
but we do offer some speculation that can be tested in future work. A particularly parsimonious 
possibility is that state-based symptoms drive drift rate deficits by tying up attentional resources 
with processing the obsessions and mental compulsions which define them. Their impact then 
fluctuates over time as they wax and wane. Clinical models have also suggested that attentional 
bias towards threat, as well as maladaptive attentive-regulatory strategies towards negative or 
unwanted thoughts, may play a causal role in generating symptoms  (Muller & Roberts, 2005; 
Adrian Wells, 1997; Adrian Wells, 2009; Adrian Wells & Matthews, 1994). These biases and 
modes of processing themselves may tie up attentional resources in addition to obsessions and 
compulsions. Of course, the general hypothesis of off-tasking processing resulting in secondary 
performance deficits has previously been articulated by others, and we are not the first to suggest 
it (Abramovitch et al., 2012; Moritz et al., 2012). Testing it in the current context in a causal fashion 
will require the creation of sophisticated new experimental paradigms that can dynamically 
manipulate attention to symptoms during perceptual decision making. Although such a feat 
will by no means be trivial, it should be noted that existing work has already demonstrated how 
one can study some of the separate pieces of the larger puzzle. First, the relationship between 
attention and drift rate during perceptual decision making has been demonstrated in two ways 
(Tavares, Perona, & Rangel, 2017): by passively measuring within-trial attentional priority using 
eye-tracking, and by differentially manipulating exogeneous attention to different options 
under consideration by assigning each a different minimum fixation time. Second, other work 
has also shown how symptoms could be provoked in the lab using idiosyncratic threat stimuli 
(Nakao, Okada, & Kanba, 2014). A future hybrid task could track and manipulate the amount 
of attention devoted to threat stimuli versus perceptual evidence in a concurrent task. Of note, 
evidence accumulation improvements in OCD patients have already been demonstrated using 
incentive manipulation for speed over accuracy 13. This shows that impairments can indeed be 
rescued through behavioral intervention, although changes in the incentive structure could drive 
improvement through a number of different mechanisms, attention being only one of them. 

We began to ask a similar question here as it relates to working memory and did not find 
evidence that a larger working memory capacity could buttress state-based effects, speaking 
perhaps against an attention-based explanation. However, we note that while attention and 
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working memory are related, they are not the same. With regard to working memory, our 
results indicated the opposite—that a larger capacity may further exacerbate state-based 
effects on evidence accumulation. One possible interpretation could be that individuals with 
high working memory capacity actually have more baseline resources to put towards the 
monitoring of—and thus ultimate exacerbation of—said symptoms (Cohen & Calamari, 2004; 
Adrian Wells, 2009; Adrian Wells & Matthews, 1994). To index working memory we used the 
OSPAN, which focuses on verbal memory and is largely unrelated to perceptual performance. 
This choice was purposeful and has both advantages and an important disadvantage. With 
regard to the advantages, first, it protects against a potential confound resulting from shared 
variance in performance between a perceptual working memory task and the dot motion task 
that is unrelated to memory ability. Second, most obsessions and many compulsions are verbal 
in nature (American Psychiatric Association, 2013; Collaton & Purdon, 2015), and differences 
in verbal working memory may play a role for this reason. On the other hand, differences in 
visual working memory also likely play an important role, as the impairments are perceptual in 
nature. It would thus be of interest to repeat asking about the role of working memory using a 
perceptual working memory measure. 

In summary, we found that state-based symptoms explained substantial variance in the overall 
relationship between obsessive-compulsive symptoms and drift rate impairments in perceptual 
decision making.  These effects were not consistently moderated by differences in working memory 
capacity. This study illustrates the potential importance of asking about state effects in other 
work which focuses on relationships between psychopathology and parameters of computational 
models.
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