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ABSTRACT
We conducted a feasibility analysis to determine the quality of data that could be collected 
ambiently during routine clinical conversations. We used inexpensive, consumer-grade 
hardware to record unstructured dialogue and open-source software tools to quantify 
and model face, voice (acoustic and language) and movement features. We used an 
external validation set to perform proof-of-concept predictive analyses and show that 
clinically relevant measures can be produced without a restrictive protocol.
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Clinicians evaluate a patient’s mental state by how (i.e., vocal prosody, facial expression) 
and what (i.e., speech content) they say during clinical interaction. This routine conversation 
produces a wealth of potentially useful data that currently are neither recorded nor quantitatively 
analyzed, representing a missed opportunity to define more precise phenotypes that could 
offer value to personalized, precise treatment indications and outcome measures in mental 
healthcare.

Clinical scales (e.g., the Brief Psychiatric Rating Scale (BPRS) (Overall & Gorham, 1962)) attempt to 
standardize a clinician’s observations, however they suffer from subjectivity, inter-rater variability, 
forced phenotypic dimensionality and lack of granularity. Manual, qualitative measures of facial 
expression date back at least to a 1964 study in which patients admitted for depression were 
video recorded and their facial action units (AUs) were coded (Ekman, 1964) Manual coding 
remains labor intensive, time-consuming and expensive (Cohn et al., 2007) limiting its clinical 
utility.

There is a long history of research analyzing verbal and nonverbal behavior to assess clinical 
status in psychiatry (Mahl et al., 1954; Mahl, 1964). Automated, quantitative verbal and nonverbal 
behavioral measures have flourished in the last decade. Objective measures of speech (de 
Jong & Wempe, 2009) and facial expression (Baltrusaitis et al., 2018) can be generated from 
video-recordings with high fidelity and accuracy. Automated measures derived from structured 
interviews have been correlated with psychiatric symptoms or clinical scales relevant to PTSD, 
depression, schizophrenia, or substance use (Bishay et al., 2019; Cohn et al., 2009; Stratou et al., 
2015; Agurto et al., 2019). However, because such studies report protocols that involve lengthy 
structured interviews conducted by trained research raters and require expensive or bulky 
recording equipment, they are not conveniently or clinically deployable.

We describe a clinically deployable framework for gathering and automatically quantifying 
behavioral health data that are already generated during standard, unstructured clinical 
conversations. We used inexpensive, consumer-grade equipment (a Zoom q8 video recorder, 
$350, and Sennheiser AVX-ME2 SET Digital Camera-Mount Wireless Omni Lavalier Microphone 
System, $699) and publicly available, automated tools to derive face, acoustic, and linguistic 
measures. We reference clinician-ratings standardized in the BPRS to show that measures derived 
from unstructured conversations infer clinically relevant phenotypic information about disease 
state within sample and in an external validation set.

Patient data across 48 sessions in 8 acutely ill inpatients voluntarily recruited from the local 
emergency department were recorded daily from admission to discharge at the CT Mental 
Health Center (CMHC’s) Clinical Neuroscience Research Unit (CNRU) from June 2019 to February 
2020 under an IRB approved by Yale University (HIC#2000025490). Open-ended questions were 
used to elicit natural, nonstructured spoken responses. An independent validation dataset 
comprising 142 structured sessions in 81 patients was collected at The Zucker Hillside Hospital 
at Northwell Health in the outpatient setting from September 2018 and July 2019 under an IRB 
approved by Northwell Health (IRB#18-0137). See Supplementary Materials for demographic 
data.

Video files were processed with the Openface facial behavior analysis toolkit (Baltrusaitis et al., 
2018) to estimate face actions units (Ekman, 2013; Ekman et al., 1969), gaze, and head pose 
features. These features, obtained for each frame in a time-series are summarized using several 
descriptors (e.g. mean) and were analyzed per-session from inpatient admission to discharge 
to quantify a patient’s longitudinal treatment trajectory. Figure 1A illustrates that mean head 
and gaze velocity (simple measures of psychomotor activity) recapitulate the BPRS depression 
inventory from inpatient admission to discharge. We further show these longitudinal trajectories 
within the context of a larger, independently collected dataset. 
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Audio recordings were processed to characterize acoustic features such as vowel space and speech 
rate. Figure 1B demonstrates how a depressed patient’s vowel space, or the area subtended by 
the frequency range of the first two formants (the first two resonant frequencies of the vocal 
track) here illustrated by the kernel density estimate of the frequencies of the first two formants 
quantifies the “flattened affect” and “slowed, monotonous speech” phenomena and shows how 
the vowel space becomes more diffuse and varied with clinical improvement related to ketamine 
treatment (the only patient to receive ketamine). 

We transcribed all recordings and extracted psycholinguistic categories using Linguistic Inquiry and 
Word Count (LIWC). Figure 2A illustrates speech structure analysis wherein the number of words 
produced by the patient relative to the therapist quantify a patient’s conversational engagement. 
We further show (Figure 2B) how the measured perseveration of a manic patient’s grandiose 
delusion (in this case, being a world-class consultant) disappears with clinical improvement.  
Semantic similarity was calculated as the cosine similarity between the vector for the word 
‘consulting’ and the text in each interview using Global Vectors for Word Representation (GloVe) 
embeddings (Pennington et al., 2014).

Figure 1 Quantitative face and 
voice features versus clinical 
progress. (A) Face psychomotor 
activity (gaze and head pose 
in radians per second scaled 
from 0 to 1) sized by BPRS 
depression score. The non-
anxious depressed patients 
(3,5,6,7) tended to have more 
movement as their depressive 
mood scores increased and 
less overall than non-depressed 
patients. Patient 8 was anxious 
and depressed, hence her head 
movement decreased as she 
recovered. Individual patients 
are assigned their own color 
and are numbered by session 
(Patient 4’s third session is 
represented by a red dot with 
the number 3). The background 
density plot (blue hues) 
provides context from a larger 
(142 sessions), independently 
collected dataset, illustrating 
how features derived from 
unstructured conversation 
fall within the scope of a 
structured exam. (B) Vowel 
space density plots visually 
reveal the trajectory of acoustic 
changes in a depressed 
patient who received ketamine 
infusion. Reduced vowel space 
is clearly visible during an 
early session (representing a 
more monotonic voice, left) 
compared with a later session 
(representing a more varied 
voice, right) for the same 
patient. The BPRS depressive 
mood score for the first session 
was 6 and 0 for the second. 
Restricted vowel space is a 
well-documented acoustic 
feature which has been shown 
to correlate with depressive 
mood (Scherer et al., 2016).
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Our proof-of-concept predictive analyses suggested that non-structured clinical interviews have 
sufficient signal to motivate future model development. Given the high likelihood of overfitting, all 
within-sample analyses are considered exploratory notwithstanding their statistical significance 
(see Table 1). Out-of-sample analyses of the external, Northwell dataset showed that facial features 
were able to predict BPRS subscore for blunted affect, however the models did not perform as well 
when predicting depressed mood. 

We again note that given the CNRU’s small sample size (48 sessions), we expect overfitting 
and therefore do not claim a generalizable model on the basis of the within-sample analyses 
performed on CNRU data alone. Further, it is worth observing that the Northwell data had a higher 
percentage of African Americans and it is well known that Openface is not optimized for multiple 
races. Notwithstanding these limitations, we believe our proof-of-concept analyses motivate 
continued in-clinic data collection and model development.

Figure 2 Conversational effort 
and speech content can be 
measured from unstructured 
clinical conversation. A) 
Conversational effort illustrates 
words per session for clinician 
and patient. The Patient 8 
(grey circles) displays an 
anxious depression phenotype 
producing markedly more 
words than the clinician. 
Participant feature data plotted 
longitudinally exposes subtle 
changes in objective measures 
that, we speculate, the human 
brain would find difficult to 
identify from memory. The 
cross-sectional plot facilitates 
patient comparison. B) Speech 
content analysis quantifies 
diminution of perseveration. 
Here, we used semantic 
analysis to calculate the cosine 
distance between the single 
perseverating patient’s speech 
vectors to the GloVe vector for 
the concept “consulting.” As 
the patient’s perseveration 
decreased, this topic became 
less frequent. No other patients 
displayed this behavior.
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Previous attempts to quantify conversational behavioral health data have deployed rigid 
interview protocols, expensive or bulky recording equipment, or costly, specialist ratings that are 
not feasible or even unsafe in real-life clinical settings or would require drastic changes to the 
clinical workflow. Our protocol-free approach mines data already produced during routine clinical 
assessments, thereby only minimally changing the clinical workflow. We show that data gathered 
on inexpensive, consumer-grade equipment and processed by a suite of automated, open-source 
analytic tools are of sufficient quality to infer standardized clinician observations. Finally, we 
demonstrate that the same behavioral phenotypes that trained clinicians perceive as evidence of 
clinical improvement can be measured and traced over time.

Because our protocol-free approach is flexible to different acuity settings, we believe that clinicians 
and researchers might incorporate behavioral measurement without the need to redefine 
their clinical workflow. With further development, our approach might help clinicians passively 
document known clinically relevant behavior and, in the future, provide parameters for detecting 
other clinically relevant behaviors that are yet undefined. Though our approach shows promise, it 
has specific limitations which necessitate discussion:

First, this proof-of-concept study was necessarily limited to correlation with a single—though 
widely implemented—measure of clinical state: the BPRS. Further research will evaluate whether 
overall symptom domains might be made more precise (e.g., “pressured” or “rapid” speech might 
be quantitatively operationalized in terms of speech rate or articulation rate) or whether aspects 
of other clinical scales (van Steenbergen-Weijenburg et al., 2010) might be automated. The long-
term value of behavioral quantification very well could be identifying features of behavior that 
the human brain cannot detect such as microexpressivity, subtle changes in speech coherence 
(Bedi et al., 2015), or the use of specific linguistic elements (e.g., determiners (Corcoran et al., 
2018)) which have previously been associated with clinical conditions. Accumulating a database 
of these features across diagnoses and confounding factors will be necessary to build models with 
sufficient predictive power to be clinically useful.

Second, our proof-of-concept analyses focused on capturing and predicting behavioral signals 
of known clinical relevance; i.e., we quantified aspects of clinical conversation that are already 
widely believed to have clinical value. While documenting behavioral measurements represents 
an improvement over standard, language-based practices, we believe that the real value of 
behavioral quantification will lie in discovering new, previously undetected signals that might 
have implications for treatment and outcome. These analyses will require further research and are 
beyond the scope of this brief communication.

In summary, we demonstrate that clinical conversation—even when brief and unstructured—
offers a currently untapped source of data that can be gathered with low-cost tools in a clinically 
feasible manner. We demonstrate and openly release code for our automated pipeline, which 
shows that conversational measures capture clinically relevant phenotypic information. 

FEATURES INPATIENT CNRU STUDY (N = 8, 
48 SESSIONS)
WITHIN-SAMPLE ANALYSES

INDEPENDENT TESTING: NORTHWELL 
HEALTH DATASET
(N = 81, 142 SESSIONS)
OUT-OF-SAMPLE ANALYSES

BPRS

Blunted 
Affect

Acoustic 0.26, p = 7E-2, SV 0.35, p = 4E-5, LA

Facial 0.72, p < 1E-5, SV 0.30, p = 5E-4, RI

Linguistic 0.72, p < 1E-5, SV –

BPRS

Depressive 
Mood

Acoustic 0.36, p = 1E-2, RI 0.16, p = 7E-2, LR

Facial 0.63, p < 1E-5, LA 0.12, p = 2E-1, LR

Linguistic 0.73, p < 1E-5, RI –

Table 1 Proof-of-concept 
predictive analyses indicate 
nonstructured interviews 
have sufficient signal to merit 
future model development. 
Results are reported for 
acoustic, facial, and linguistic 
feature types both within-
sample for our internal 
dataset collected at the CNRU 
and out-of-sample for an 
external dataset collected 
independently by Northwell 
Health. Given the high 
likelihood of overfitting, within-
sample analyses are considered 
exploratory. In the out-of-
sample analyses of the external 
dataset, facial features were 
able to predict BPRS subscore 
for Blunted Affect, however the 
models did not perform as well 
when predicting Depressed 
Mood. Given the small sample 
size relative to the number of 
features (acoustic = 333, facial = 
1030, linguistic = 24), prediction 
performance is reported as a 
Spearman rank coefficient and 
p-value. Regression algorithms 
used to obtain the best result 
noted as LR-linear, RI-ridge, LA-
lasso, SV-support vector.
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ADDITIONAL FILE
The additional file for this article can be found as follows:

•	 Online Supplementary Material. Further description of analytic pipeline and patient 
demographic information. DOI: https://doi.org/10.5334/cpsy.78.s1
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