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ABSTRACT
We provide a proof of principle for an evolutionary systems theory (EST) of depression. 
This theory suggests that normative depressive symptoms counter socioenvironmental 
volatility by increasing interpersonal support via social signalling and that this response 
depends upon the encoding of uncertainty about social contingencies, which can be 
targeted by neuromodulatory antidepressants. We simulated agents that committed to 
a series of decisions in a social two-arm bandit task before and after social adversity, 
which precipitated depressive symptoms. Responses to social adversity were modelled 
under various combinations of social support and pharmacotherapy. The normative 
depressive phenotype responded positively to social support and simulated treatments 
with antidepressants. Attracting social support and administering antidepressants also 
alleviated anhedonia and social withdrawal, speaking to improvements in interpersonal 
relationships. These results support the EST of depression by demonstrating that following 
adversity, normative depressed mood preserved social inclusion with appropriate 
interpersonal support or pharmacotherapy.
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INTRODUCTION
It has recently been proposed that depressed mood reflects an adaptive, socially risk-averse 
psychobiological strategy that preserves social relationships (i.e., inclusion) when there is 
evidence for maladaptive instability in interpersonal exchanges (Badcock et al., 2017). This 
perspective follows an evolutionary systems theory (EST) of human biobehaviour called the 
hierarchically mechanistic mind, which combines insights drawn from research in psychology 
with the computational resources borrowed from the theory of active inference in theoretical 
neurobiology (Badcock, Friston, & Ramstead, 2019). This model rests on two fundamental claims. 
The first conforms to the theory of active inference by suggesting that the brain comprises 
hierarchically organized neurocognitive mechanisms that reduce the dispersion or decay of our 
sensory and phenotypic states—by generating action-perception cycles that minimize surprising 
exchanges with the world. The second claim ensues from an embodied perspective on neural 
form and function—that accommodates the broader evolutionary, developmental, and real-time 
processes that act on human phenotypes. The implication here is that to understand a phenotypic 
trait, we need approaches that synthesise findings from diverse fields of inquiry to explain both 
why that trait is adaptive, along with how it emerges from the nested dynamics across different 
timescales. In this spirit, the current study provides proof of principle for the EST of depression, 
using simulations of active inference. We conclude by discussing the clinical implications of our 
model.

Our proof of principle integrates two major schools of thought. The first is rooted in evolutionary 
psychological approaches to depression, rallied around the social risk hypothesis (SRH) proposed 
by Allen and Badcock (Allen & Badcock, 2003). Psychological symptoms of depression include 
feelings of sadness, emptiness, and hopelessness, along with systematic disinterest in activities 
(i.e., anhedonia), feelings of worthlessness, and inappropriate guilt. Typically, a diagnosis of 
depression is made when symptoms have been present for at least 14 days (American Psychiatric 
Association, 2013). Two important symptoms of depression are anhedonia and social withdrawal: 
the latter is commonly observed in depression as a clinical correlate of anhedonia, but is not a 
formal criterion (Buckner et al., 2008). Evolutionary models of depression explain the maintenance 
of genetic vulnerabilities to depressive symptomatology in terms of the selective advantage of 
these vulnerabilities in ancestral environments (R. M. Nesse, 1990). The adaptive properties of 
depression are thought to be restricted to the relatively transient, normative depressed mood 
states that we all experience from time to time, while more severe manifestations, like those 
observed in major depressive disorder, reflect a dysregulation of our species-typical capacity for 
mood variation (Nettle, 2004). The SRH suggests that depressive symptoms might have been 
selected as a strategy that prevents the deterioration of interpersonal relationships. Low mood 
reduces one’s propensity for social risk-taking, and increases implicit signalling for social support, 
which reduces competitive encounters (see Box 1 for background). Clinical depression occurs 
when this sequence becomes maladaptive; specifically, when it does not lead to a resumption 
of normal mood. This may be due to neurobiological or psychological deficits that maintain 
increased sensitivity to social instability, or to instabilities or the absence of support in the proximal 
environment towards which the depressed individual reacts. The increased sensitivity to social 
instability constitutes the basis of the neurocognitive processes leading to depressed mood, upon 
which selection can act (for a review see (Badcock, Friston, Ramstead, et al., 2019)).

There are three general classes of evolutionary models of normative depressed mood. The 
first of these – resource conservation views – claims that depressive symptoms, such as 
learned helplessness, are a response to a low positive reward rate and insufficient control 
over reward and punishment (Randolph M. Nesse, 2000), and unobtainable incentives 
or goals (Klinger, 1975). Low appetitive functions (e.g., anhedonia) allow the individual 
to fine-tune resource allocation by precluding investment in poor pay-off activities. The 
second class refers to the social competition model, which claims that social status (e.g., 
rank and position in the social group) positively correlates with access to resources that 

Box 1 Evolution and depression.
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The second root of our simulation centres upon formal, testable models of depressive phenomena 
that borrow from the principles of computational psychiatry (Huys, Guitart-Masip, et al., 2015). 
Accordingly, a key aspect of the work reported in this paper is the attempt to model social inference – 
as it relates to the phenomenology of depression – from first principles. This is challenging, because 
of the many aetiological factors that underwrite the psychopathology and pathophysiology of 
depression. We try to formalise the normative aspects of depression as a Bayes optimal response to 
inference in the prosocial world, while considering both social and pharmacological interventions. 
To our knowledge, this is the first modelling work that addresses the interaction between social 
factors and pharmacotherapy within the same formalism. In this sense, the simulations reported 
here also provide a proof of principle for a model of the effects of drug treatment on neuronal 
computations that underlie belief updating and behaviour in depression. In brief, we make three 
basic assumptions that allow us to characterise the effect of drug treatment on social inference 
and subsequent behaviour. First, both inference and learning conform to the same (ideal Bayesian 
observer) principles of active inference; namely, belief updating and experience-dependent 
plasticity both optimise a variational free energy bound on (log) model evidence or marginal 
likelihood (Friston et al., 2016). Second, pharmacotherapy motivates neuromodulatory effects that, 
computationally, change the precision of sub-personal probabilistic beliefs (i.e., prior beliefs about 
states of affairs in the world or likelihood mappings between causes and consequences) (Parr et 
al., 2018). Finally, one cannot ignore the reciprocal coupling between an agent and her (prosocial) 
environment when modelling interpersonal exchanges. This requires an explicit consideration 
of how environmental (prosocial) contingencies respond to an agent’s behaviour (Badcock et 
al., 2017) (see Box 2 for background). Here, the embedded aspect of interventions on the social 
environment (Bruineberg et al., 2018; Constant et al., 2018) was modelled by an increase in social 
reliability following patterns of behaviour that can be construed as social signalling. Our hope was 
to show that functional responses to social adversity use the same inferential mechanisms seen in 
pathological depression – and that psychopathology can be remediated by a combination of social 
support and drug therapy. 

enhance reproductive success. Depressive symptoms such as social withdrawal remove 
the individual from conflicts and other status-impairing situations that would negatively 
impact their social rank (Gilbert, 1997; Price, 1967). The third, attachment model claims that 
given the delayed maturation of human infants (Hrdy, 2011), offspring survival necessitates 
intensive parental and alloparental investment. Behaviours designed to maintain proximity 
to caregivers are instigated when significant affectional bonds are threatened. In the face of 
precarious interpersonal relationships, depressive symptoms should promote help-seeking 
and inhibit exploratory behavior and risk-taking, thereby maintaining relationships with 
the proximal familial environment, while avoiding the deterioration of current social bonds 
(Ingram et al., 1998). Standing alone, it has been argued that these models cannot account 
for the full scope of the depressive phenotype (Allen & Badcock, 2006). Darwinian models do 
not provide an explanation of the underlying mechanisms upon which selection can act. For 
instance, how is ‘resource reallocation’, ‘preventive withdrawal from the social environment’, 
or ‘familial bond strengthening’ implemented mechanistically? This is a problem, since 
the unit of selection is never a complex behavioral trait, but rather some (epi)genetic 
dispositions to express such traits. The Social Risk Hypothesis (SRH) was proposed to provide 
a solution to these issues and has since been developed into a neurobiologically plausible 
and empirically tractable mechanistic explanation for depressive phenomena (Badcock et 
al., 2017). According to this view, normative levels of depressed mood reduce the probability 
of deleterious social outcomes via three broad classes of action: (1) depression increases 
individuals’ cognitive sensitivity to environmental cues of social risk or instability; (2) it 
reduces their behavioural propensity for social risk-taking; and (3) it generates signalling 
behaviours (e.g., reassurance seeking, crying, gaze aversion) that attract social support and 
defuse aggressive or competitive encounters.
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Our numerical proof of principle is based on active inference for discrete states, using (Markovian) 
generative models (Friston, Parr, et al., 2017) – see method section. We present a series of 
simulations based on an augmented version of a two-armed bandit game from economics, in 
which the agent has to choose between a risky or safe social engagement (Schwartenbeck et al., 
2019). The augmentation involved offering the agent a cue option that indicates whether the risky 
arm is low-risk or high-risk (i.e., it indicates the social context); this contextual state alternates 

Box 2 Computation, inference 
and depression.

Computational phenotyping is a method in computational psychiatry to test hypotheses 
about the neurophysiology of mental disorders to inform nosology and suggest treatment 
approaches (Corlett & Fletcher, 2014). A computational phenotype refers to the set of 
measurable features of an agent; often described in terms of the ‘priors’ and ‘likelihood 
mappings’ of a generative model used by subjects for perception and decision-making 
(Schwartenbeck & Friston, 2016). The associated parameters of generative models show 
variation across the population upon which selection acts (Montague et al., 2012). This 
formal approach to phenotyping effectively reduces the phenotype to some formal priors 

– or prior beliefs – that personalise a (generative) model that people use to predict and 
interact with their (physical, physiological, prosocial or cultural) econiche. These interactions 
are usually cast in terms of (Bayesian) belief updating under a generative model that 
characterises a given phenotype. Computationally, prior probability distributions can take 
numerous forms (e.g., normal, Dirichlet, delta). This form depends on the state space being 
modelled (e.g., discrete, as in this paper, or continuous). Priors can also have different 
‘temporal’ scales, relative to the scale at which (Bayesian) belief updating unfolds. ‘Adaptive 
priors’ are sculpted by evolutionary processes and become encoded over the course of 
ontogeny in the physiology and functional architectures of the brain; that is, they emerge 
from interactions between priors that are ‘empirical’ and ‘evolutionary’. Empirical priors 

are learned over development (e.g., learnt distribution of food patches), while evolutionary 
priors function as initial conditions that shape the learning of empirical priors (e.g., a prior 
preference for energy-rich food) (Friston, 2010). Technically, empirical priors arise whenever 
there is a hierarchical generative model. Empirical priors are the constraints offered to a 
lower level, from a higher level. When hierarchical models are inverted, empirical priors 
become informed by (empirical) data. Simulating belief updating – under a generative model 

– allows researchers to produce synthetic, in silico measurements (e.g., psychophysical and 
physiological responses) of the sort that are usually studied in real-world empirical contexts. 
The generative model can be manipulated by inducing artificial lesions in likelihood mappings, 
or by simulating pharmacological treatment that generally changes the priors (Parr et al., 
2018). In so doing, one can generate artificial data in the context of a task that can be 
used in empirical studies. One can then test hypotheses by comparing artificial responses 
with participants’ empirical data (Cullen et al., 2018). The symptoms of depression are 
thought to relate to deficits impacting long-term reward evaluation through the acquisition 
of ‘pessimistic’ priors that entail negatively biased learning of environmental states (Huys, 
Daw, et al., 2015). Priors should reflect unambiguous beliefs about the world, as well as 
beliefs about the relation between environmental states and observed outcomes. For 
instance, we cannot directly infer the mood of another solely from the sensory impressions 
of that person’s facial expression. Rather, we must consider some prior assumptions about 
the person’s behavior and outcome probability over time (e.g., she usually smiles a lot, but 
she is not smiling today, so it is likely that something is awry). These are empirical priors. 
In depression, empirical priors biasing decision-making tip the balance towards pessimistic 
inference, thereby leading to systematically pessimist thoughts. For instance, depressive 
patients form negative sentences more quickly and frequently than non-depressed controls, 
when presented with both optimistic and pessimistic options (e.g., in the scramble sentence 
test) (Hindash & Amir, 2012; Rude et al., 2003). The simulations offered in this paper try to 
capture this belief-based phenomenology by using synthetic agents and active inference – a 
generic framework for (active) Bayesian inference and planning.
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every other trial. Narratively, the cue corresponds to social media that provides information or 
evidence that reduces uncertainty about the prevailing social context. This means that healthy 
agents will systematically sample the cue to make an informed decision. As they sample their social 
environment, agents will learn the probability of reward afforded by choosing one of the two arms. 
Narratively, this relates to checking people’s availability before choosing among social options.

Based on the learning process characteristic of active inference, agents exposed to social adversity 
(e.g., rejection by social partners) will learn the likelihood of being rejected. We simulate different 
phenotypes, with and without social support and pharmacotherapy, which reshape the agent’s 
(pessimistic) prior beliefs. Our numerical analyses speak to how pharmacotherapy and social 
support – triggered by social signalling on social media – allows the agent to regain a normal mood. 
Depending on the type of intervention (social, pharmaceutical, or the lack thereof), the agent 
typically experiences a phase of low mood, and either spirals into persistent depression (anhedonia 
and social withdrawal), or returns to various levels of normal functioning. We will quantify the 
responses of our synthetic agent in terms of task performance and associated synthetic mood 
(i.e., expected reward under a given action policy) and behaviour (action selection). 

Our two-arm bandit social decision-making task (see Figure 1) involves choosing among three social 
engagement options, which vary in their risk. The first is a ‘safe’ option, but with low social preference 
(going to a well-known friend, Rudolph, who you know can be engaged with 100% success, but 
won’t provide the most fulfilling interaction). The second, ‘risky’ option has a high preference (going 
to see a new popular student, Caroline, whom you do not know, but were told is a lot of fun), but 
is risky because Caroline often forfeits, and the agent is averse to failed social encounters. On a 
‘good day’ the agent has a 75% chance of successfully engaging Caroline, but on a ‘busy day’, only 
a 25% chance of catching her. The third, ‘socially epistemic’ option yields a null cost: under this 
option, the agent can turn to social media, to see if Caroline is having a ‘busy day’. To characterise 
prosocial and emotional inference that might underwrite depression, we considered belief updating 
and subsequent behavior under 8 different conditions – in a three-way factorial design involving the 
following factors: social adversity, social support, and pharmacotherapy (see Table 1). 

Figure 1 Narrative description 
of the social decision-making 
task. Over 64 days, the 
challenge is to maximise social 
encounters with Caroline. The 
agent has two moves (Caroline 
and Rudolph are both absorbing 
states, meaning that once the 
agent reaches them, it must 
stay there). For instance, on the 
first move, the agent can solicit 
information about Caroline’s 
availability by going on social 
media, and then, on the second 
move, decide where to go. 
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METHODS AND MATERIALS
Active inference is a Bayesian framework that only uses local information (i.e., there is no external 
supervision) for belief-updating, in order to ensure biological plausibility. Markov Decision Processes 
(MDPs) can be used to simulate how agents infer which discrete hidden states (s) of the world 
provide the best explanation of observed sensory outcomes (o), under a given generative model. 
To generate predictions of sensory outcomes, an agent needs prior expectations about initial 
hidden states (an initial state prior, D), how states generate sensory outcomes (sensory mapping, 
A), and how states evolve over time (state transitions, B). The agent can infer states of the world 
by minimising the discrepancy between predicted and observed outcomes (a.k.a., variational free 
energy), or equivalently, by maximising Bayesian model evidence. For mathematical details, see 
(Parr & Friston, 2017).

When expectations of hidden states are conditioned upon the agent’s plan or policy (as encoded 
in the policy dependent B matrices), one has a generative model of action (see Figure 2). Without 
an external referee to say what is right or wrong, the agent will need to: (i) predict her course of 
action, based on the succession of states, expected under each policy; and (ii) select her action 
based on (posterior) beliefs about the best policy. To that end, we equip the agent with (self-
referential) prior beliefs that are biased towards policies with stronger expected model evidence 
or, equivalently, lower expected free energy, G. 

Mathematically, expected free energy can be decomposed into pragmatic and epistemic 
components for any given policy. On the one hand, pragmatic value (i.e., exploitation) biases policy 
selection towards obtaining preferred sensory outcomes (evolutionary prior preferences, C), much 
like utility in reinforcement learning. On the other hand, epistemic value (i.e., exploration) biases 
policy selection towards the (expected) minimisation of uncertainty about states of the world 
(a.k.a., artificial curiosity). 

Uncertainty can be over beliefs about current hidden states or model parameters (as quantified 
in free energy F) or over beliefs about future hidden states and their associated outcomes under 
a given policy (as quantified in expected free energy Gπ). In active inference, the latter guides 

Baseline The agent performs the social decision-making task in the absence of any adversity over 
a period of 64 days. 

Severe depression We induce social adversity on the 28th day by changing the uncertainty of social 
outcomes. The agent is now rejected by Rudolph (always) and by Caroline on a ‘bad day’. 
On a good day, the odds are inverted, such that Caroline is likely to afford a negative 
outcome. In other words, there is a flip in contingencies of the social environment. 

Social support We introduce social support on the 30th day, which reduces uncertainty about the 
outcomes of social encounters – and therefore resolves social adversity. This is modelled 
as an increase in Rudolph and Caroline’s reliability, which is increased when the agent 
forages for information on social media. Narratively, this could be interpreted as the 
agent signaling (implicitly or explicitly) to Caroline and Rudolph that they should be more 
consistent. Recovery thus depends on the sensitivity of the social environment and on 
how often the agent consults social media. 

Pharmacotherapy First-line pharmacotherapy typically employs either selective serotonin or 
norepinephrine reuptake inhibitors, and sometimes mixed serotonin or norepinephrine 
reuptake inhibitors (e.g., venlafaxine and duloxetine); the latter usually being used in 
patients who do not respond to serotonin reuptake inhibitors (Harmer et al., 2017). 
We simulate two types of synthetic pharmacotherapy: one motivated by serotonin 
and the other by norepinephrine. We assume, based on (Harmer et al., 2017), that 
serotonin upregulates prior expectations about initial states (i.e., increases the perceived 
probability of Caroline showing up), whereas noradrenaline introduces uncertainty 
about state transitions. Noradrenaline entails an overall loss of precise belief-updating 
during planning, a loss which underwrites the exploration of states that may lead 
to social reward. Condition 3 involves both noradrenaline and serotonin, condition 4 
noradrenaline only, and condition 5 serotonin only.

Social support and 
pharmacotherapies

Condition 6 involves social support and both antidepressants; condition 7 involves 
support and noradrenaline only; and condition 8, support and serotonin only.

Table 1 Interventions.

https://doi.org/10.5334/cpsy.70
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action selection and can be decomposed in three distinct sources of uncertainty: (i) expected 
ambiguity, or anticipated uncertainty about hidden states (e.g., “how certain will I be about 
Caroline’s mood, given that I check social media?”), (ii) expected risk, or the anticipated uncertainty 
about whether future outcomes will align with preferences C (e.g., “how certain will I be that 
I obtain preferred outcomes, given that I visit Caroline?”), and (iii) the anticipated uncertainty 
about Dirichlet parameters of the likelihood mapping A (e.g., “how much might I learn about 
state-outcome mappings if I visit Rudolf?”) (Kaplan & Friston, 2018). Each of these sources of 
uncertainty can be manipulated directly with interventions on the model. Here, we focus on direct 
intervention on salience—via serotonergic and noradrenergic manipulation of initial states and 
state transitions—and on the indirect manipulation of extrinsic value via the manipulation of 
social observations, or outcomes (Figure 2). Thus, in our simulations, our agent will have a double 
incentive for social engagement: (i) fulfilling preferences for positive social outcomes; and (ii) the 
natural drive towards resolving her uncertainty over the various beliefs she has about the social 
world (c.f., curiosity about a new acquaintance). Crucially, it is this double incentive that we exploit 
to formalize the behavioural dynamics envisaged by the EST of depression; the first incentive 
relating to ‘evolutionary’ prior preferences for high social reward, and the second incentive relating 
to ‘developmental’ learning. 

We limit the notion of social engagement to face-to-face encounters with Rudolph or Caroline.

The software to simulate belief updating and action selection, based on the specification of any 
generative model (as the one specified in Figure 2), is freely available as part of the academic 
software SPM; specifically, the Matlab routine spm_MDP_VB_X.m (https://www.fil.ion.ucl.ac.uk/spm/

software/spm12/). 

The generative model and process used to simulate social inference – and ensuing changes in 
depressed mood – are described formally in Figure 2. In brief, this setup considers 5 (observable) 
outcomes: an outcome that sets the scene for a social choice (e.g., being at home), three levels 
of social reward (low, moderate and high), and an epistemic cue that reports the current context 
(this is a ‘Go’ or ‘no-Go’ social context) that determines Caroline’s availability. 

Outcomes are generated by two kinds of external states called hidden factors. The first is the 
context with the two levels pertaining to Caroline’s availability. These hidden states are not 
under the agent’s control. Conversely, transitions among the states of the second factor reflect 
the agents choice or policy, with four levels; i.e., home, Rudolph, Caroline, social media. The two 
factors interact to generate outcomes. Specifically, the context (Caroline’s availability) determines 
whether the social media state generates an (epistemic) outcome that is ‘go’ or ‘no-go’. Put simply, 
this means the agent can choose to find out whether Caroline is available or not—or contact 
her directly—or not. The context alternates every other day, meaning that the context-sensitive 
outcome available to the agent changes every other day.

Given some observations, the agent can predict outcomes under a set of plans or policies, given 
her beliefs about (policy-dependent) transitions among different states. This enables her to 
evaluate the expected free energy of each policy – and use the expected free energy as prior 
beliefs to form posterior beliefs, given what she has already observed. An action is generated 
by selecting the most likely action from the resulting posterior. And so, the cycle of perception 
and action continues. Notice that the coupling between the agent and the world is mediated by 
observable outcomes and action. The interventions corresponding to the conditions above can be 
modelled, either by changing the prior beliefs of the agent (about initial conditions, likelihoods or 
state transitions), or by changing the prosocial world in a way that responds to her choices.

RESULTS 
We used belief updating to simulate perception, action, and learning under different levels of 
social adversity, support and antidepressant treatment (i.e., pharmacologically induced changes 
in prior beliefs about states and contingencies). The results of these simulations are summarised 
in Figures 4–6. Behavioural outcomes and choices were assessed using the criteria listed in Table 2. 
In what follows, we described the responses to different scenarios or conditions in turn.

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


Figure 2 Computational description of the decision-making task. The generative model and generative process of our decision-making task. Open 
circles represent random variables (hidden states and policies), filled circles represent the outcomes, squares represent model parameters (e.g., 
likelihood A, empirical priors B, D, G, and the evolutionary prior C). The generative model is shown in the upper part of the figure, while the process 
generating outcomes is shown in the lower part. The generative model and process are coupled through the same outcomes (o) and actions (u), 
where outcomes are used to infer hidden states and policies – and action is sampled from policies to change the states that are being inferred. 
States of the generative model are denoted by ‘s’ while states of the generative process are denoted as ‘s_bar’. The generative model is a joint 
probability distribution over outcomes and hidden states, which can be decomposed into factors. Factors are conditional densities (categorical: 
Cat; or Dirichlet: Dir) that make up the priors and likelihood of the generative model. Priors that depend on random variables, such as hidden states 
and policies, are empirical priors (e.g., priors that are learnt at a given hierarchical level or time scale). Priors that do not vary on this time scale 
are initialised as evolutionary priors (e.g., C). These are log preference vectors that rank the desirability of associated outcomes. Lower-case a and 
b correspond to matrices of concentration parameters for A and B respectively. The process whereby outcomes are generated decomposes into 
a series of belief updates: (i) Policy selection: the sequence of actions (i.e., plan or policy) is inferred under prior beliefs that the most likely policy 
minimises expected free energy (G); (ii) Inference about future states depends on state transitions encoded by the transition matrix (B) and the 
likelihood (A); (iii) Inference about outcome: the policy – with respect to the probability transitions – generates probabilistic outcomes at each time 
point. The likelihood of each outcome is encoded in the likelihood matrix (A), which attributes the probability of each possible outcome to each 
possible state; and (iv) Action: the agent selects the most likely action under posterior beliefs about policies. The green arrow highlights the circular 
causality that results when the generative model and process are coupled through outcomes and ensuing action. The process generating outcomes 
triggers the message-passing, under the generative model, which entails the evaluation of a policy, from which actions are selected. Actions 
change states in the generative process and a new outcome is generated. Thus, the cycle of perception and action continues. Learning corresponds 
to updating the concentration parameters that underwrite posterior beliefs about the likelihood of the sensory matrix (A). Each exchange with the 
environment is accumulated by concentration parameters. This accumulation encodes the probability of outcomes, given hidden states – enabling 
the agent to learn about environmental contingencies (and the social environment to change in response to the agent’s actions). The generative 
model and process can be defined for any scenario. The icons in the upper panel refer to changes in the generative model induced by (simulated) 
pharmacotherapy, or by changes in the generative process afforded by social adversity and support. These changes are described in the next figure. 
For a detailed description of the update equations and underlying theory, see (Friston, Parr, et al., 2017).



Figure 3 This figure details the likelihood and prior transition probabilities for our generative model of prosocial exchanges. The variables pertaining 
to the generative model are shown in light blue boxes, while the corresponding parameters of the generative process (i.e., the social world) are 
shown in light pink. The states and outcomes in this model are generated under two contexts pertaining to Caroline’s availability: available or not 
available. For ease of visualization, we have shown context-sensitive outcome likelihoods. In other words, there are six potential outcomes, but we 
have conditioned the epistemic (‘go’ and ‘no-go’) outcome on the context (to generate five outcomes). This simplifies the graphics and is licensed 
by the fact that only the epistemic outcome is context-sensitive. The top-left section corresponds to the contingencies during the initial exchanges 
(days 0–28) and corresponds with the narrative description in Figure 1. The adverse life event on the 28th day amounts to Rudolph and Caroline (on 
a good day) now yielding negative outcomes, and Caroline, even on a good day, affording negative outcomes. Adversity happens when the agent is 
sensitive to (i.e., prone to learn) the social environment. We implemented this by reinitialising the counts over the sensory prior beliefs of the agent 
(a). Social adversity and support are modelled by changing the precision or reliability of social outcomes in the generative process – in response 
to social signals. This is a subtle aspect of this model; namely, the generative process or social environment responds adaptively to the agent’s 
behaviour. As of the 30th day (for the conditions involving social support), we implement social support by adding counts (+10) to the likelihood of 
the environment counts (+10) for the cells corresponding to the mappings ‘Rudolph and positive outcomes’, ‘Caroline good day context and positive 
outcome’, and ‘Caroline busy day context and negative outcome’. The n_i corresponds to the number of times the agent visited the location a_i. 
The increase in counts has the ultimate consequence of driving the probability mapping in the (A) of the generative process towards and beyond 
their initial values more. A ‘+10’ is added to the cells every time the agent solicits the epistemic cue (i.e., social media). This implements the social 
signalling characteristic of adaptive low mood. Pharmacological interventions on the 35th day include the following: Serotonin provides an optimistic 
bias by changing prior beliefs about the initial states, in favour of the ‘Go’ context (from .5;.5 to .99;.01). Noradrenaline decreases the precision of 
the transition probability matrices B (i.e., it increases uncertainty about future states), which leads to a gradual accumulation of uncertainty about 
unvisited states. Through the expected ambiguity component of expected free energy G, it tends to motivate exploratory behaviours. The agent 
continues to learn the state transition after we administer noradrenaline. 



Figure 4 Baseline. Top panel: The upper images show the posterior expectation of each of 10 policies (see method, Figure 2) as they evolve from 
day to day (64 in total). The small circles in the upper part of these panels indicate the observed outcomes (context in the first panel, and outcome 
in the second). The context changes every other day. The pragmatic value of these outcomes is shown as a (black) bar chart in the second panel. 
The lower panel describes the interventions that depend on the condition, and the symptoms, which are: (i) anhedonia when pragmatic value or 
reward (black bars) are below the pink bar over multiple days (duration, black shaded rounded rectangles), and (ii) social withdrawal, expressed by 
policies 1,4,7, and 10. The lower left panel provides a legend (upper) and a graphical description of the policies (lower). The intensity component of 
anhedonia corresponds inversely to the expected utility of a policy, or the extent to which it will yield preferred outcomes. Narratively speaking, this 
amounts to expecting socially rewarding outcomes when engaging a certain action. The intensity component of anhedonia is thus defined as low 
appetitive action. We assume that normal levels of appetitive action correspond to the expected utility experienced on most days, for a healthy 
(baseline) agent (pink line). The duration component of anhedonia corresponds to the number of consecutive days. A normative assessment of 
anhedonia thus would involve 14 consecutive days, as is the case in the condition of severe depression below.



Figure 5 Responses to 
intervention. This figure uses 
the same format as the upper 
panels of Figure 4. Interventions 
are indicated by the solid lines 
(red line: social adversity; blue 
line: social support; orange line: 
pharmacotherapy). The plots 
report the simulated responses 
to social adversity (red lines in 
all quadrants), and the remedial 
effects of social support (blue 
line in the second quadrant). 
Quadrants with orange lines 
show the corresponding effects 
of pharmacotherapy (serotonin 
or noradrenergic). The four 
treatment conditions show the 
same behavior over the first 28 
days as the baseline scenario. 
This figure reports the results of 
conditions 1 to 4. 

Figure 6 Responses to 
pharmacotherapy and social 
support. This figure uses 
the same format as Figure 
4 and 5. Here, we report the 
responses to the final three 
conditions; namely, responses 
to serotonin and noradrenaline 
and combinations of drug 
treatment (yellow line), after 
social support (blue line).

Symptoms 
of 
normative 
depression

Anhedonia Intensity When the expected utility or reward is below the 95% confidence 
interval of the (healthy) control condition. Our subject experiences 
a lack of pleasure and disinterest in (prosocial) activities – of an 
intensity that a healthy phenotype experiences only about once 
every 20 days.

Duration When the intensity criterion is met for multiple consecutive trials. 
Narratively, the subject experiences a lack of pleasure and disinterest 
in (social) activities – lasting many days.

Social 
withdrawal 

Policies that do not lead to an encounter with social partners (see Figure 3) 

1: Stay home, stay home (starting point, Figure 1)

4: Stay home, go to social media

7: Go to social media, go back home 

10: Go to social media, stay on social media Table 2 Synthetic diagnostic 
criteria.
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BASELINE 

0 Baseline (Figure 4): The first 28 trials are equivalent across all simulations. In the absence of 
adversity, the agent skillfully responds to contextual changes by shifting between action policies 
that yield a (risky) high social reward and a (safe) moderate social reward. After the 7th trial, the 
agent always engages epistemic policies; foraging on social media first, followed by exploitative 
behaviour resulting in positive or negative outcomes. Before the 7th trial, the agent is still learning 
her prior beliefs about social partners and figuring out what policy will best suit her preferences; 
hence the different policies (6,9,8,4, see Figure 4, bottom right for a visual description of each 
policy). After the 23rd day, the agent misreads the situation: Caroline was having a good day, but 
the agent perceived a negative outcome (e.g., by misinterpreting Caroline’s behavior during the 
encounter). The expected utility remains high over all (above the baseline; the pink line), and 
crucially, there are no consecutive days of anhedonia. Figures 5 and 6 use the same format as the 
upper panel in Figure 4 to show the effects of various interventions on social adversity and support, 
with or without pharmacological interventions.

SEVERE DEPRESSION, SOCIAL SUPPORT, SEROTONIN AND NORADRENALINE

1 Severe depression (Figure 5, upper left quadrant): The agent experiences social adversity 
on the 28th trial (i.e., a rejection from Rudolph and Caroline), and has no social support (i.e., her 
signaling has no effect on Caroline and Rudolph). The adverse life event entails ongoing exposure 
to negative outcomes. The increase in exposure to negative outcomes is caused by a change in 
the generative process, which now yields 0% chance of generating a mildly rewarding outcome 
at the Rudolph state (previously 100% chance), and a 100% chance of generating a negative 
outcome at that same state. In addition, there is now a 0% chance of a positive outcome and a 
100% chance of a negative outcome at the Caroline state during the no go context (busy day), 
and the probability of Caroline yielding a positive outcome on a good day has been inverted. Now, 
even on a good day, Caroline only affords a 25% chance of a positive outcome (see adversity on 
the 28th day, Figure 3). Importantly, the adverse life event affects both the generative process 
(making bad outcomes more likely for Caroline, and unavoidable for Rudolph), and the generative 
model by resetting the concentration parameters to their initial values (as they were at trial 1). The 
motivation for reinitializing the counts is primarily to sensitise our agent to novel outcomes. This 
sensitisation rests on the fact that learning slows down with the accumulation of concentration 
parameters (e.g., during the first 27 days). Because the agent’s generative model reverts to its 
initial settings, the agent expects to obtain positive outcomes at Caroline’s on her good days, for 
some time after the adverse life event. This explains why our agent keeps selecting policy 9, which 
leads to Caroline, on multiple days (8 days) after the adverse event. 

In our simulation, such a manipulation does not map onto a biological process that we would have 
aimed to reproduce in silico. It is simply an artefact of the design. Narratively, it may be said that it 
simulates the awareness of a change in social context caused by a functional forgetting in short-
term memory (i.e., from trial 1 through 28) reinstating the agents initial memory parameters (i.e., 
at trial 1). This leads to an increased sensitivity to the novel social environment. In this particular 
sense, the resetting of concentration parameters is arguably consistent with the phenotype of 
depression. Early childhood adversity is a risk factor for depressive disorder by sensitizing the 
individual to proximal environmental stressors later in life —e.g., making the agent more likely to 
undergo parameter reset after an adverse life event (Starr et al., 2014) and memory disruptions 
and negative biases are commonly associated with depression—e.g., acquiring negative bias 
based on the learning of pessimistic expectations after adverse life events (Dillon & Pizzagalli, 
2018). A simulation explicitly aimed at studying the impact of functional forgetting on treatment 
course could either systematically vary the depth of forgetting or use hierarchical models to allow 
forgetting to emerge naturally from learning and inference of higher-level contextual states (Hesp 
et al., 2021). 

Occasionally, the agent experiences a negative outcome when Caroline was supposedly having 
a good day (as indicated by the Go cue). This occurs on average about 25% of the time, because 
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outcomes are generated from the likelihood mapping in Figure 3, which shows there are intrinsic 
uncertainties in the mapping from Caroline’s mood to positive or negative outcomes (25% chance 
of failure on Caroline’s good days, 75% chance of failure on Caroline’s bad days). On average, the 
agent will get a dissatisfying outcome 25% of the time the agent visits Caroline on a good day, 
because of the constitution of the likelihood mapping (Figure 3). The agent is not misinterpreting 
the cue. It is Caroline that exhibits intrinsic variability.

The agent persistently evinces a low mood, below baseline (i.e., intensity of anhedonia). 14 days 
after the adverse live event, the agent shifts to a social withdrawal policy (4). This is caused by 
acquiring a pessimistic likelihood about the outcomes afforded by Caroline and Rudolph. Without 
intervention, the pessimistic likelihood is successively reinforced. 

2 Social support (Figure 5, upper right quadrant): In this scenario, the agent experiences adversity 
on day 28 but is provided with social support 2 days later (i.e., her social signaling changes 
Caroline’s and Rudolph’s behaviour). Following this, the agent’s mood recovers, relative to the 
baseline condition. This is because Caroline becomes more reliable and the agent is certain that 
Caroline will show up on a good day, and not on a busy day. This scenario corresponds to what is 
expected under both the social risk hypothesis and our EST of depression. When the environment 
is adaptive (i.e., responsive), low mood causes the agent to regain typical functioning – via social 
signalling. Note that social support failed in simulations where the support was delayed by more 
than 2 days. After 2 days without support, the pessimistic beliefs become too robust, and no 
amount of social support is enough to reshape the prior. When the support comes too late, the 
agent spirals into severe depression. Of course, the critical period of intervention of 2 days depends 
on the parametrisation of the generative model. Under different parameter values, the critical 
period could be extended. This speaks to the importance of the timing of social interventions 
to effectively interrupt and revert the learning of the pessimistic likelihood. More formally, the 

 ANHEDONIA SOCIAL WITHDRAWAL

INTENSITY 
CRITERION:
EXPECTED UTILITY 
BELOW 95% CI
(% OF 36 DAYS POST-
ADVERSITY*)

DURATION 
CRITERION:
2 OR MORE 
CONSECUTIVE DAYS
(% OF 36 DAYS POST-
ADVERSITY*)

BEHAVIOR CRITERION:
SELECTED POLICY 1,4,7, 
OR 1
(% OF 36 DAYS POST-
ADVERSITY*)

CONDITION 1
Severe depression

100% 97% 61%

CONDITION 2
Adaptive mood 
(social support)

6% 3% 0%

CONDITION 3
Serotonin

19% 19% 81%

CONDITION 4
Noradrenaline

53% 53% 75%

CONDITION 5
Serotonin and 
noradrenaline combined

61% 61% 50%

CONDITION 6
Social support and 
serotonin combined

6% 0% 0%

CONDITION 7
Social support and 
noradrenaline combined

44% 31% 22%

CONDITION 8
Social support and 
serotonin and 
noradrenaline combined

6% 25% 47%

Table 3 This table provides a 
summary of results in terms of 
the percentages of days post-
adversity (out of 36) during 
which the synthetic subject 
met the subjective criteria 
for anhedonia in terms of 
intensity (expected utility below 
threshold) and duration (two or 
more consecutive days) and the 
behavioural criteria for social 
withdrawal.

* Starting the first day after the 
adverse event (day 29th).
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adaptive response comes from a change in the likelihood of the generative process (see Figure 3), 
which by generating certain outcomes, leads to a learning of the likelihood matrix. This learning 
assigns high probabilities to the mappings between the Rudolph state and the high social reward 
(instead of the moderate social reward), between the Caroline state and the high social reward on 
the ‘go’ context, and between the Caroline state and the low social reward on the ‘no go’ context. 
The behavioural manifestation of the social intervention is a return to the correct policy, given the 
context, namely 8 and 9. 

We now consider the therapeutic effects of pharmacotherapy in the absence of social support.

3 Serotonin (Figure 5, lower left quadrant): Serotonin upregulates prior expectations over the 
‘go’ state at the beginning of the trial (D). The intervention based solely on serotonin precludes 
consecutive days of low mood. However, social withdrawal remains (policy 1). Given that the 
agent receives no social support, the likelihood of receiving negative outcomes from Rudolph on 
either day is still 100%. The likelihood remains pessimistic after the social adversity on the 28th 
day; hence the best move for our agent is to stay at home (policy 1), despite the serotonergic bias 
on beliefs over the go context.

Administration of serotonergic antidepressants induces very strong expectations of Caroline 
having a ‘good day’, which had the (unintended) side-effect of countering our agent’s epistemic 
drive. The agent experiences multiple bad outcomes between the moment of the adverse life 
event and the beginning of the pharmacotherapy, even on good days. The consequence of this 
is that the expected utility of good days reduces as the agent is left with neither an epistemic 
nor a pragmatic drive—and opts to stay at home instead. This slightly counterintuitive effect of 
serotonergic pharmacotherapy underscores the clinical relevance of (1) the timely administration 
of antidepressants (e.g., before further negative associations become dominant), (2) the support 
of antidepressants with other types of interventions (i.e., this effect does not occur when combined 
with social support in our simulations), and (3) the further investigation of potential ways to model 
and predict the (side-)effects of antidepressants.

4 Noradrenaline (Figure 5, lower right quadrant): Noradrenaline gradually increases uncertainty 
about future states (i.e., increases uncertainty in the transition B matrices), which underwrites a 
loss of precise belief-updating during planning—and motivates exploratory behaviours, through 
the expected ambiguity (in G). This is reflected in Figure 5 (lower right quadrant, top panel) showing 
imprecise beliefs over policies 1 to 10. Noradrenaline intervention engenders several days of low 
mood after administration, which are generally associated with social withdrawal (policy 7). There 
is a combination of withdrawal policies (1,4,7), and uncertainty over these policies; e.g., the agent 
sometimes ends up going to Caroline and receiving a negative outcome (e.g., day 42). Episodes 
of anhedonia and social withdrawal are short, but present nonetheless, which suggests that the 
agent is still depressed. We next turn to the effects of combining pharmacotherapy with social 
support by repeating the above conditions in the setting of a responsive social context.

COMBINED INTERVENTIONS 

Computationally, social support, serotonin, and noradrenaline operate the same way as 
described above, whether they are administered individually or combined. What changes are the 
behavioural effects. To understand these novel effects, we must pay attention to the temporal 
structure of the depressed system (i.e., the coupled generative model and process). Social support 
will be the first intervention to impact the generative model (the agent part of the system) by 
generating the outcome on the basis of which inference and learning operate. Serotonin will act 
first by influencing initial states (D), and finally noradrenaline will act by influencing policy planning 
(through B). The selected policy, if it involves going to the social media state, will influence the 
probability of outcomes in the generative process (see 30th day, Figure 3), which will then loop 
back into the generative model to influence inference and learning. 

5 Serotonin and noradrenaline combined (Figure 6 lower left quadrant): After the 
pharmacotherapy on day 35, the agent experiences episodes of anhedonia at regular intervals. 
However, these are characterised by perceived negative social encounters with Caroline, not social 
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withdrawal. According to the specifications of our simulation, this means that the agent does not 
meet the requirements for severe depression (i.e., anhedonia and withdrawal criteria). The agent 
alternates between policies 1, 2, and 3, which do not involve going to social media. This is arguably 
because serotonin promotes an optimistic bias, meaning that no information foraging is required 
(e.g., going on social media).

6 Social support and serotonin (Figure 6, lower left quadrant): In this condition, there is no 
withdrawal and overall, the mood states are non-depressed (above baseline). This condition 
combines an optimistic bias with an increase in social stability, yielding high certainty about the 
reception the agent will receive from Caroline and Rudolph. Since beliefs about policy-dependent 
state transitions remain the same, there is no need to explore. On Caroline’s good days, the agent 
approaches Caroline, and on her busy days, the agent engages Rudolph. Note, however, that the 
agent remains uncertain about which policy to pursue, and compared to the scenario combining 
noradrenaline, serotonin, and social support, the agent never engages pragmatic policies (e.g., 6).

7 Social support and noradrenaline (Figure 6, lower right quadrant): This condition yields a 
variety of responses, and some short episodes of low mood. These are sometimes caused by social 
withdrawal (e.g., days 64,63), and sometimes by high risk-taking (e.g., day 60), expressed by policy 
6. The exploration of the policy space in this scenario is driven by the slow decrease in precision 
over the transitions (B matrices), coupled with an increase in social partners’ reliability.

8 Social support and serotonin and noradrenaline combined (Figure 6, upper right quadrant): 
The agent experiences adversity but has social support and access to pharmacotherapy. This 
scenario largely precludes social withdrawal and consecutive days of anhedonia, and the agent is 
highly optimistic. Almost on every occasion, the agent engages policy 3 (i.e., wait, then approach 
Caroline), which explains mood episodes below baseline. Otherwise, the agent engages policy 2 
(i.e., wait, then approach Rudolph). Low mood is characterised by risk taking, not social withdrawal. 
Moreover, for the first time, the agent engages policy 6, which is a pragmatic policy (i.e., going 
directly to Caroline). This speaks to the effect of noradrenaline, which motivates the agent to 
disambiguate (future) states that are deemed uncertain, while the few days of withdrawal speaks 
to the serotonergic bias manifest when Caroline is on a bad day. Note that the epistemic character 
of a policy concerns the extent to which it disambiguates uncertain transitions. Now, uncertain 
transitions might be transitions between non epistemic ‘states’, that is, states that provide go/
no go outcomes (i.e., if I know where the cue is and where the cue leads, but I do not know if my 
current location leads to a reward, I will explore this latter transition first, especially if I believe 
I am in a ‘go’ context, which is what the serotonergic bias does). Hence this condition involves 
epistemic policies—as in disambiguating behavior—without these policies soliciting epistemic 
cues. 

DISCUSSION 
Using active inference, we have reproduced (artificial) anhedonia and social withdrawal 
to provide a numerical analysis of the EST of depression. We specified a generative model, 
involving multiple components that conspired to generate context-sensitive responses to social 
uncertainty; particularly, the prior preferences for socially rewarding outcomes (e.g., encounters 
with Caroline). Our results provide support for our hypothesis that depressed mood reflects an 
adaptive response to interpersonal adversity. Following an adverse life event, our synthetic agent 
resolved interpersonal uncertainty via social signaling, thereby alleviating her depressed mood. 
Except for scenarios involving social support, all the conditions we simulated resulted in an 
above-average duration of episodes of anhedonia and social withdrawal, speaking to unresolved 
uncertainty. Crucially, we do not claim that depressive psychopathology is adaptive. Indeed, 
unlike our ‘social support’ condition, the ‘severe depression’ scenario proved to be maladaptive, 
characterised by unresolvable episodes of low mood and social withdrawal. This may either occur 
when signalling is defective (e.g., due to personality difficulties, rendering a person unable to 
deliver the appropriate signals), or when it fails to be received (e.g., cues provided by someone 
who is socially isolated). 
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A key aspect of simulations similar to ours is the explicit and formal modelling of the aetiological 
factors that underwrite the selection of, or inference about, prosocial behaviour; ranging from 
Bayesian belief updating (i.e., perceptual inference), through to experience-dependent plasticity 
(i.e., perceptual learning), and to the social and encultured responses of the environment. The 
active inference framework has an explicit (neuronal) process theory, which could allow future 
studies to simulate the selective effects of neuromodulatory interventions on the encoding of 
precision or uncertainty, and its consequences for the agent’s social behaviour. Having a complete 
model of (aberrant) social inference means that in the future, one could simulate neuronal 
processes that lend themselves to empirical measurement. Studies along these lines could 
simulate dopamine responses in order to provide qualitative predictions that could be tested with 
functional magnetic resonance imaging, e.g.,(D’Ardenne et al., 2008; Schwartenbeck et al., 2015). 
In this setting, dopamine responses are usually associated with updates to the expected precision 
of Bayesian beliefs about the policy in play (see Appendix E in Friston, FitzGerald, et al., 2017; Sales 
et al., 2019)

In our simulations, uncertainty over contingencies decreased every time the agent referred to 
social media. Narratively, this could be interpreted as the agent signaling (implicitly or explicitly) 
to Caroline and Rudolph that they should be more consistent in order to provide more support. 
Note that this does not imply any qualitative change in prosocial responses; it simply corresponds 
to an increase in the consistency or reliability of responses that may or may not be affiliative. 
Computationally, this amounts to repairing the environment, such that the prior beliefs of a 
phenotype are fit for purpose. In other words, the (social) environment changes to match the prior 
beliefs of its incumbents; thereby reversing the suboptimality implicit in maladaptive depression. 
Recovery then depends on the sensitivity of the subject’s social environment and on how often she 
consults social media. Here, the positive effect of combining pharmacotherapy with social support 
is thought to be attributable to the optimistic bias associated with serotonin (Harmer, 2008; 
Harmer et al., 2017), coupled with the effect of noradrenaline, which motivates the exploration of 
states associated with rewards (Aston-Jones & Cohen, 2005). 

Given the parametrization of our subject, the best intervention was the combination of social 
support and serotonin, while the worst outcome—in terms of social withdrawal—was the 
intervention with serotonin alone (see results table). How these two interventions work together 
in real participants remains open to question Table 3. Computationally, serotonin provides an 
optimism bias while social support confirms that bias by returning the social environment to its 
normal setting (i.e., the setting matches the non-pessimistic expectations of the agent). However, 
when social support is lacking, serotonin leads to repeated, failed social encounters and social 
isolation. It is unclear whether serotonergic antidepressants are direct mood enhancers. Rather, it 
is suggested that antidepressants work by augmenting positive emotional processing, which then 
has positive effects on other psychological factors (Harmer et al., 2009). Our simulation results 
highlight this more complex systemic interaction between the psychosocial and neurocognitive 
aspects of depression and stresses the importance of social support. Indeed, social support in 
older adults is known to have alleviating, bidirectional effects on symptoms of depression and 
anxiety. Social disconnectedness appears to predict perceived isolation, which itself predicts 
higher depressive symptoms, and vice versa (Santini et al., 2020). Adolescents who self-report 
higher perceived social support at age 19 are less likely to show depressive symptoms one year 
later (Scardera et al., 2020), and reviews emphasise the significant protective effects of perceived 
emotional and instrumental support, as well as social network diversity in the general population 
(Santini et al., 2015). The strength of the positive effect of social support, of course, rests on the 
subject-specific parametrization, which we can expect to vary across real subjects. For instance, 
we initialized our subjects as ‘blank slates’ with respect to state transitions. However, this would 
be expected to vary across participants based on their individual experiences and development. 
This may also vary based on the volatility of the (prosocial) environment prior to the occurrence of 
social adversity. Again, our proposal is a proof of principle, and is only meant as a general portrait 
of what is feasible, when considering the social environment in computational phenotyping. 
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Our results speak to the Darwinian models of depression synthesised by the Social Risk Hypothesis 
(SRH) (cf. Box 1). Following the attachment model, simulated agents – displaying anhedonia and social 
withdrawal – inhibited social risk-taking under social uncertainty. Following the social competition 
hypothesis, the adverse life event reduced social uncertainty by producing social withdrawal. 
Consistent with the resource conservation model, after the adverse event, the agent progressively 
returned to Caroline, so long as the agent knew exactly when to approach her. From the point of view 
of the SRH, the explanations of the attachment model, the social competition model, and the resource 
conservation model are all grounded in the dynamics we simulated. The dynamics we simulated 
were the increase in social uncertainty leading to behavioural and psychological symptoms that 
either lead to depression—when the social environment is not responsive—or to the restabilisation 
of the social network—when the social environment is responsive. The Evolutionary System Theory 
(EST) of depression, which is the recent neurocomputational reinterpretation of the SRH, frames the 
adaptive mood dynamics integrated by the SRH as an attunement dynamic between evolutionary 
adaptive priors (here prior preferences), plastic developmental priors (here B and a likelihood A), 
and a social environment (here a generative process). These would have been selected to conspire 
to generate adaptive symptoms of depression in order to trigger social network restabilisation (ex. 
condition 2); social network stability having been crucial to evolutionary success throughout human 
history (see Box 1). When the social environment fails to respond to the social signalling represented 
by depressive symptoms, the behaviourally adaptive pessimistic beliefs that produced this signalling 
spirals into the maladaptive beliefs characteristic of depressive illness.

CONCLUSION: FUTURE DIRECTIONS 
Simulation studies such as ours can be used to simulate both the symptoms and underlying 
processes of inference in silico. Note, however, that our generative model only had one level. By 
adding levels to the generative model, as in hierarchical (deep) active inference (Friston, Parr, et al., 
2017), one could further finetune these affective dynamics. For instance, one could keep lower-
level preferences fixed, reflecting their evolutionary origins, while allowing learning in higher-
level preferences to change as a function of life experiences (e.g., learning to prefer Rudolph’s 
underwhelming calm over Caroline’s extravagance). Furthermore, generative models – of the kind 
used above – can be fitted to individual and population level clinical data; involving some general-
purpose tasks related to a disorder of interest (e.g., social decision-making in depression), thereby 
yielding a novel avenue for computational phenotyping, prognosis, and diagnostic nosology. The 
idea here is that clinicians could then predict psychiatric trajectories in specific individuals, when 
conditioned on different available treatment options. The latter could then be used to generate 
a prognosis and course of treatment tailored for any client, which we believe is perhaps the most 
exciting promise of generative modelling in clinical psychiatry. 

However, before achieving this, there are many conceptual and technical limitations to overcome, 
which chiefly relate to the treatment of clinical data using computationally meaningful generative 
models. Behavioral measurements such as hits and misses and associated social withdrawal can 
be measured in experimental designs that track behaviour in a decision-making task, with a given 
narrative (e.g., based on vignettes of real-life scenarios). The challenge lies in fitting individual and 
environmental initial conditions for both the generative model and generative process (see method, 
Figure 3). For instance, assuming that preferences are endowed by (encultured) evolution, one 
should provide a reliable estimate of population-level preferences for social encounters. Then, one 
should assess the degree of precision of empirical priors and measure the expected utility for each 
action policy. Crucially, in order to implement the effect of social support, one could also gather 
and translate information about environmental responsivity. This could be done via task-specific 
questionnaires (e.g., on a Likert scale, how desirable is an encounter with Rudolph versus Caroline? 
How reliable do you consider Caroline? Etc.). Alternatively, these questions could be answered by 
data captured by various technologies. Smartphone-based, passive sensing technologies, which 
can capture behavioural data (e.g., distances travelled, exercise, sleep, social media activity) and 
psychological data (e.g., affective tone of text entered), might help in this regard (Sapiro et al., 
2019). More generally, the specification of environmental components might be achieved by using 
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various local cultural factors (e.g., cultural norms) regarding the responsivity to idioms of distress; 
i.e., culturally specific ways of expressing illness experience (Kirmayer & Young, 1998).

In short, to achieve clinical utility, generative models of depression should summarise the client’s 
neurocognitive disposition to learning as well as her social situation, in terms of the environmental 
responsivity to her signalling. The role of the clinician, then, would be to map the evolutionary (e.g., 
adaptive priors), neurocognitive (e.g., empirical priors), and social (e.g., environmental responsivity) 
portrait of specific clients in terms of a generative (phenotypic) model – a Computational Evolutionary 
Social assessment of sorts. This opens a novel avenue for research, which attempts to quantify 
both generative models and processes, by bringing together the expertise of cultural, evolutionary, 
and computational psychiatrists and psychologists. If such an approach proves reliable – and 
robust predictions can be made regarding the course of illness experience and optimal treatment 
options – using computational (social and neurocognitive) phenotyping to improve psychiatric 
assessment, diagnosis, and tailored interventions might become commonplace.
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