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ABSTRACT

Schizophrenia is associated with a number of deficits in decision-making, but the scope,

nature, and cause of these deficits are not completely understood. Here we focus on a

particular type of decision, known as the explore/exploit dilemma, in which people must

choose between exploiting options that yield relatively known rewards and exploring more

ambiguous options of uncertain reward probability or magnitude. Previous work has

shown that healthy people use two distinct strategies to decide when to explore: directed

exploration, which involves choosing options that would reduce uncertainty about the

reward values (information seeking), and random exploration (exploring by chance), which

describes behavioral variability that is not goal directed. We administered a recently

developed gambling task designed to quantify both directed and random exploration to

108 patients with schizophrenia (PSZ) and 33 healthy volunteers (HVs). We found that PSZ

patients show reduced directed exploration relative to HVs, but no difference in random

exploration. Moreover, patients’ directed exploration behavior clusters into two qualitatively

different behavioral phenotypes. In the first phenotype, which accounts for the majority of

the patients (79%) and is consistent with previously reported behavior, directed exploration

is only marginally (but significantly) reduced, suggesting that these patients can use directed

exploration, but at a slightly lower level than community controls. In contrast, the second

phenotype, comprising 21% of patients, exhibits a form of “extreme ambiguity aversion,” in

which they almost never choose more informative options, even when they are clearly of

higher value. Moreover, in PSZ, deficits in directed exploration were related to measures of

intellectual function, whereas random exploration was related to positive symptoms. Taken

together, our results suggest that schizophrenia has differential effects on directed and

random exploration and that investigating the explore/exploit dilemma in psychosis patients

may reveal subgroups of patients with qualitatively different patterns of exploration.
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INTRODUCTION

Growing evidence suggests that schizophrenia is associated with a number of decision-making

deficits. In particular, relative to healthy volunteers (HVs), patients with schizophrenia (PSZ)

show a reduced tendency to use potential reward magnitude in computing expected value

(E. C. Brown et al., 2015; J. K. Brown et al., 2013), less systematic choice behavior (Strauss

et al., 2011) and preferences (Strauss et al., 2012), and abnormal effort–cost computations in

decision-making (Gold et al., 2013). However, these studies largely focus on the ability to max-

imize rewards, assuming the reward statistics are known (or learned from prior experience).

Notably, choice of an option of lesser reward value is not always suboptimal, particularly if

that choice would yield potentially useful information (i.e., by reducing the uncertainty about

outcome statistics). Such explore/exploit choices arise frequently in daily life, whether it in-

volves deciding between meals at a restaurant (explore the specials or exploit the pizza you

know and love?) or treatments for a chronic disease (explore a novel treatment whose efficacy

is uncertain or exploit a known treatment you have used for years?). From a computational per-

spective, however, striking the right balance between exploration and exploitation is difficult,

as it involves trading off the relative benefits of information, which is useful for optimizing fu-

ture decisions, and expected value, which is useful for making in-the-moment choices (Gittins,

1979; Gittins & Jones, 1979).

Recently, we have shown that HVs make explore/exploit decisions using a mixture of two

behavioral strategies: directed exploration, in which information seeking drives exploration by

choice, and random exploration, in which behavioral variability drives exploration by chance

(Wilson, Geana, White, Ludvig, & Cohen, 2014). Algorithmically, directed and random ex-

ploration can be thought of as modifiers of the value associated with different options (which

we denote as Qk for the value of option k). In this framework, one can think of directed explo-

ration as adding an information bonus, IBk, to the expected value of each option according to

information provided by choosing that option (i.e., how much the outcome would reduce the

uncertainty about the true expected value). In contrast, random exploration adds random deci-

sion noise, nk, to the values of both options. This noise tends to randomize the choice, making

us more likely to explore low-value options by chance. Importantly, the level of randomness

can be adjusted, as described below.

As an example, one way to decide between meals at a restaurant is to assign an expected

value (R) to each option, corresponding to how rewarding we think each meal will be. Thus,

a known quantity, pizza, might get a predicted value of Rpizza = 65 out of 100, indicating

it has been reliably good in the past, whereas an unknown special (say, a new pasta dish)

might get Rspecial = 50, based on our best guess about how good it will be. In this context,

the known pizza receives no information bonus, IBpizza = 0, because eating it tells us nothing

new, whereas the pasta dish receives a large information bonus, IBspecial = 20, because eating

it is informative and we will learn how good it is. In contrast, random exploration simply

adds noise to the value of all options, which will sometimes boost the value of exploring (e.g.,

npizza = 1, nspecial = 15), but at other times may encourage us to exploit (e.g., npizza = 10,

nspecial = −5) or even to select an option that we think we know is bad (chopped liver for

some; gefilte fish for others).

Previous work has indicated that directed exploration increases during adolescence,

whereas random exploration remains constant (Somerville et al., 2017); that directed, but not

random, exploration is reduced by inhibition of the frontal pole (Zajkowski, Kossut, & Wilson,

2017); and that random, but not directed, exploration is altered by the norepinephrine reuptake

inhibitor atomoxetine (Warren et al., 2017). Importantly, a number of studies have found that
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schizophrenia is associated with increased aversion to various forms of uncertainty, including

risk, where the probabilities of different outcomes are known (J. K. Brown et al., 2013), and

ambiguity, where the probabilities of different outcomes are unknown (E. C. Brown et al., 2015;

Cheng, Tang, Li, Lau, & Lee, 2012). Such uncertainty aversion works against directed explo-

ration (where the more informative options by definition have greater potential for uncertainty

reduction and thus are usually more uncertain to begin with).

While considerable evidence indicates that impaired reward-seeking behavior (goal-

directed exploitation) may specifically contribute to negative symptoms (such as reduced mo-

tivation, or avolition) in schizophrenia (Strauss, Waltz, & Gold, 2014; Waltz & Gold, 2016),

relatively few studies have examined whether motivational deficits in schizophrenia may be as-

sociated with deficits in directed exploration—the tendency to seek information in the service

of resolving uncertainty. Consistent with this idea, in a response time task requiring participants

to discover whether rewards were larger for faster or slower responses, PSZ—especially those

with symptoms of anhedonia—showed reduced tendency to adjust their RTs toward the more

uncertain outcomes (Strauss et al., 2011). This suggests that, even in the presence of intact

reward sensitivity and reward-seeking behavior, avolition in schizophrenia could result from

a reduced tendency to seek information in the service of resolving uncertainty. Although this

result is consistent with reduced directed exploration, it could have resulted from increased

uncertainty aversion writ large (i.e., regardless of exploration benefits) and also did not have

such a straightforward approach to assessing random exploration. The latter point is particu-

larly important given that a number of studies have found that schizophrenia is associated with

increased baseline behavioral variability (Collins, Brown, Gold, Waltz, & Frank, 2014; Strauss

et al., 2015), without assessing whether this variability is used for exploration.

Aside from exploration/exploitation, the issue of how PSZ balance prior beliefs and new

evidence has recently become a major focus in the domain of perceptual processing. In that

context, positive symptoms have been linked to an overweighting of prior beliefs relative to

current sensory evidence, thereby distorting perceptual processing as well as belief formation

(Baker, Konova, Daw, & Horga, 2019; Powers, Mathys, & Corlett, 2017). On the basis of

evidence that uncertainty can drive exploration in the service of reducing uncertainty about

an option, we speculated that if more severe psychosis is associated with greater reliance on

prior beliefs, the severity of psychosis might also be linked to reduced flexibility in learning

as well as a decrement in uncertainty-driven (directed) exploration. Moreover, if randomness

is a strategy to compensate for the inability to direct exploration in the service of obtaining

information and reducing uncertainty, it is possible that psychosis would also be linked to an

increased tendency for random exploration.

To determine whether schizophrenia was associated with changes in directed and ran-

dom exploration, we used our recently developed behavioral task, known as the Horizon Task

(Wilson et al., 2014), to quantify individual differences in directed and random exploration. In

this task, participants make a series of decisions between virtual slot machines, loosely based

on the “one-armed bandits” found in a casino, with participants receiving a bonus in propor-

tion to the number of points they earn (Figure 1). When chosen, each bandit pays out a reward

in the form of points sampled from a Gaussian distribution whose mean is different for each

option, varies from game to game, and is (initially) unknown to the subject. Thus, to maximize

their earnings, they must try to exploit the slot machine with the highest mean payoff but can

only be sure which option is best by exploring first.

The key manipulation in the Horizon Task is the number of choices participants will

make in the future—the time horizon. The horizon determines how valuable it is to explore.

Computational Psychiatry 20



Directed Exploration in Psychotic Illness Waltz et al.

Figure 1. Schematic of the horizon and information conditions in the Horizon Task. In this task,
participants play a series of 120 games, in a self-paced manner, lasting either 5 or 10 trials each, in
which they choose between virtual slot machines, each of which pays out a reward in the form of
points sampled from a Gaussian distribution whose mean is different for each option, varies from
game to game, and is (initially) unknown to the subject. After four forced-choice trials, participants
make either one or six free choices. The key manipulations in the Horizon Task are the number
of free choices in each game (termed the “horizon”), which determines how valuable it is to ex-
plore, and the amount of information the participant has about each option (how many observed
outcomes, from one to three). When the game is short (five total trials, one free choice; termed
Horizon 1), exploration has no value since there is no opportunity to use new information in the
future. When the game is long (10 total trials, 6 free choices; termed Horizon 6), it is often worth
exploring at first to gain information that may be useful later on. The four forced-choice trials set up
two information conditions: A) an unequal condition, or [1 3], in which subjects see one example
from one bandit and three from the other, and B) an equal information, or [2 2], condition, in which
subjects see two draws from each bandit. Thus, there are four combinations of horizons (1 vs. 6)
and information (equal vs. unequal).

When the horizon is short, it is usually best to exploit (because any information value of the

chosen option could not be further exploited in future trials); in contrast, when the horizon is

long, exploration has more value. For example, when dining at a restaurant for the last time

(a short horizon), one would likely exploit the favored pizza, but when expecting to return

to a restaurant many times in the future (long horizon), one might take more time to explore

the specials. In this way, the horizon manipulation allows us to quantify directed and ran-

dom exploration as the change in information seeking and behavioral variability with horizon.

Crucially, this manipulation allows us to distinguish directed and random exploration from

baseline uncertainty attitude and baseline behavioral variability, factors that may be unrelated

to exploration.

On the basis of our previous work (Strauss et al., 2011), we hypothesized that patients

would show reduced directed exploration, relative to community controls. Moreover, we pre-

dicted that measures of directed exploration would correlate with the severity of negative symp-

toms like anhedonia and avolition (amotivation). By contrast, we predicted that measures of

random exploration would not correlate with the severity of anhedonia and avolition, because

these symptoms are thought to specifically reflect reductions in goal-directed behavior. That is,
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anhedonia and avolition are thought to specifically reflect reductions in goal-directed behavior

and not necessarily increases in non-goal-directed behavior, and a reduction in goal-directed

behavior does not necessarily imply an increase in non-goal-directed behavior (or vice versa).

Finally, based on the idea that more severe psychosis is associated with greater reliance on prior

beliefs, we predicted that some measures of exploration would correlate with the severity of

positive symptoms.

METHODS

Participants

To determine the effect of psychotic illness on directed and random exploration, 108 people

with a diagnosis of schizophrenia or schizoaffective disorder (referred to, collectively, as PSZ)

and 33 age-matched HVs performed the Horizon Task at the Maryland Psychiatric Research

Center (MPRC), University of Maryland School of Medicine. All participants gave informed

consent, and the research was approved by the Institutional Review Board at the University of

Maryland School of Medicine.

Clinical and Cognitive Measures

Patients were clinically and pharmacologically stable (no change in drug or dose for at least 4

weeks) outpatients from the MPRC or other nearby clinics. Almost all PSZ were being treated

with antipsychotic medications (see Table S1 for details). The presence of a schizophrenia

spectrum disorder in patients, as well as the absence of a current Axis I disorder (including drug

dependence) and lifetime diagnosis of a psychotic disorder in HVs, was verified by screening

with the Structured Clinical Interview for DSM–IV (First, Spitzer, Gibbon, & Williams, 1997).

The absence of a neurological disorder, cognitively impairing medical disorder, and psychosis

in first-degree relatives was verified by self-report. PSZ were further assessed with the Scale

for the Assessment of Negative Symptoms (SANS; Andreasen, 1984) and the Brief Psychiatric

Rating Scale (BPRS; Overall & Gorman, 1962).

PSZ and HVs were tested using a cognitive battery including the Wechsler Abbreviated

Scale of Intelligence (WASI; Wechsler, 1999), the Wechsler Test of Adult Reading (WTAR;

Wechsler, 2001), and the Measurement and Treatment Research to Improve Cognition in

Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB; Green et al., 2004). There were

significant differences between patients and community controls on all measures of cognition

(Table 1).

Experimental Task

We used the Horizon Task (Wilson et al., 2014; Figure 1) to quantify directed and random

exploration. In this task, participants play a series of 120 games, in a self-paced manner,

lasting either 5 or 10 trials each, in which they choose between virtual slot machines, each

of which pays out a reward in the form of points sampled from a Gaussian distribution whose

mean is different for each option, varies from game to game, and is (initially) unknown to the

subject (the standard deviation, however, remained constant at 8 points). Specifically, in each

game, the mean of one option (pseudorandomly chosen in a counterbalanced manner) was set

to either 40 or 60 points, while the mean of the other was offset relative to this value by plus

or minus 30, 20, 12, 8, or 4 points (pseudorandomly chosen in a counterbalanced manner).

Participants were incentivized to earn as many points as possible, with points converted into

money in a linear fashion (From the instructions: “The points you earn by playing the bandits
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Table 1. Demographic, cognitive, and clinical measures in the full sample of patients and controls

Measure Patientsa Controlsb Inferential statistic

Demographic

Age, years, M(SD) 37.0 (10.1) 36.4 (10.4) t = 0.307

Gender 36 female, 72 male 11 female, 22 male χ
2 = 0.000

Race 53 C, 43 AFA, 4 AS, 18 C, 13 AFA, 0 AS, χ
2 = 1.372

7 M/O 2 M/O

Subject education, M(SD) 13.2 (2.1) 15.1 (2.1) t = 4.374∗∗∗

Parental education, M(SD) 14.3 (2.9) 14.0 (2.6) t = 0.671

Cognitive, M(SD)

WASI estimated IQ (four subtests) 94.5 (14.1) 111.5 (13.8) t = 6.05∗∗∗

WRAT-Reading scaled score 97.2 (14.8) 109.7 (15.0) t = 4.26∗∗∗

WTAR scaled score 99.0 (17.5) 110.9 (14.0) t = 4.01∗∗∗

MATRICS composite score 32.9 (12.7) 51.3 (11.0) t = 7.56∗∗∗

MATRICS domain scores

Processing Speed 38.1 (12.5) 53.1 (11.8) t = 6.10∗∗∗

Attention/Vigilance 39.9 (11.3) 52.3 (11.2) t = 5.53∗∗∗

Working Memory 39.7 (10.4) 51.9 (11.6) t = 5.74∗∗∗

Verbal Learning 37.7 (7.9) 50.6 (8.8) t = 8.01∗∗∗

Visuospatial Learning 36.0 (12.3) 45.5 (10.7) t = 3.99∗∗∗

Reasoning/Problem Solving 43.4 (10.8) 49.6 (9.8) t = 2.98∗∗

Social Cognition 41.9 (12.0) 54.6 (8.0) t = 5.70∗∗∗

Clinical, M(SD)

BPRS mean item score—all items 1.7 (0.4)

BPRS mean item score—Psychosisc 2.2 (1.2)

BPRS mean item score—Depressionc 1.9 (0.9)

SANS mean item score—all items 1.5 (0.7)

SANS mean item score—Avolition/Anhedonia 2.0 (0.9)

Note. AFA = African American; AS = Asian; BPRS = Brief Psychiatric Rating Scale; C = Caucasian; MATRICS = Measurement and

Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery; M/O = mixed/other; SANS = Scale for the

Assessment of Negative Symptoms; WASI=Wechsler Abbreviated Scale of Intelligence; WRAT-Reading=Wide-Ranging Achievement

Test, Reading Subtest; WTAR = Wechsler Test of Adult Reading.
an = 108. bn = 33. cFrom the factor analysis of McMahon et al. (2002).

**p < 0.01. ***p < 0.001.

will be converted into REAL money at the end of the experiment, so the more points you get,

the more money you will earn.”) Participants were also instructed that one option was always

better, in terms of expected value (“One of the bandits will always have a higher average

reward”) and that the mean payout of each option was constant for each game.

To maximize their earnings, participants must exploit the slot machine with the higher

average payoff, but they can only be sure which option is best by exploring first. The key

manipulation in the Horizon Task is the number of trials in each game, the horizon, which

determines how valuable it is to explore. When the horizon is short (one trial), exploration
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has no value, because there is no opportunity to use new information in the future. When

the horizon is long (six trials), it is often worth exploring at first to gain information that may

be useful later on. Thus, by contrasting behavior between Horizon 1 and Horizon 6 on the

first choice of each game, the Horizon Task can quantify the components of behavior that are

related to exploration.

To control the amount of information participants have before making a decision, each

game starts with four forced-choice trials in which participants are instructed which option to

choose. These forced trials set up two information conditions: an unequal condition, or [1 3],

in which subjects are forced to play one bandit once (to obtain one example payout from that

option) and the other bandit three times (to obtain three example payouts from that option)

(Figure 1A), and an equal information, or [2 2], condition, in which subjects are forced to play

both bandits twice (Figure 1B). Participants completed 30 games of each type (combination

of horizon and information condition) for 120 games total, with the entire task taking roughly

50 minutes to complete. Basic performance on the task was quantified by computing the

frequency with which participants chose the objectively correct option (i.e., the option with

the higher generative mean), and participants were paid in proportion to the total number of

points they earned.

Measures of Directed and Random Exploration

The two information conditions in the Horizon Task allow us to quantify directed and random

exploration in a model-free manner by looking at the first choice in each game, immediately

after the four forced trials (Figure 1). Specifically, because directed exploration involves in-

formation seeking, it can be quantified as the probability of choosing the more informative

option in the [1 3] condition, p(high info). Conversely, because random exploration involves

decision noise, it correlates with the frequency of “errors,” choosing the low-mean option in

the [2 2] condition, p(low mean). Crucially, computing these measures separately for each

horizon condition allows us to (a) quantify baseline uncertainty seeking and behavioral vari-

ability as p(high info) and p(low mean) in Horizon 1 and (b) quantify directed and random

exploration as the change in p(high info) and p(low mean) between Horizon 1 and Horizon 6.

Statistical Analysis

To assess overall experimental task performance, we submitted individual accuracy scores

(rates of choosing the option with the objectively higher mean) and response times to repeated-

measures analyses of variance (ANOVAs), with choice (trial) number within a game as a

within-subjects factor and diagnostic group as a between-subjects factor. We also performed

repeated-measures ANOVAs to determine whether directed and/or random exploration varied

as a function of horizon and diagnostic group. On the basis of our identification of a subgroup

of participants showing extreme ambiguity aversion (AA; described below), we performed both

of the above analyses on patient group with the addition of an AA group, as a factor. In cases of

significant interactions, post hoc t-tests were used to assess differences in cell means. Addi-

tionally, we used t-tests and Mann–Whitney U-tests to examine effects of diagnostic group and

AA group on measures intellectual function and symptom severity (depending on whether the

scores were normally distributed). Finally, we used Spearman correlation analyses to assess

relationships among experimental, standard cognitive, and clinical variables.

Model-Based Analysis

We modeled behavior on the first free choice of the Horizon Task using a slightly modi-

fied version of the Kalman filter model (Markov chain Monte Carlo method) presented in
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Zajkowski et al. (2017; Figure 2). This model assumes that participants use the outcomes

of the forced-choice trials to learn an estimate of the mean reward of each option, as well as

the uncertainty in their estimate of that mean, which is then fed into a decision rule that also

includes terms for directed and random exploration.

Briefly, in this model, information seeking is quantified as an information weight, βI ,

with higher values of βI corresponding to more information seeking. This allows us to quantify

directed exploration as the change in information weight with horizon. Likewise, behavioral

variability is quantified using a reward weight, βR, with higher reward weights associated with

lower variability. This allows us to quantify random exploration as the change in reward weight

with horizon.

In addition to quantifying directed and random exploration, the model allows us to quan-

tify the learning process with three parameters: a prior mean, R0, and two learning rates

corresponding to the initial learning rate, α1, and asymptotic learning rate, α∞. The initial

Figure 2. Graphical representation of the model. Each variable is represented by a node, with
edges denoting the dependence between variables. Shaded nodes correspond to observed vari-
ables, that is, the free choices cGshug, forced-trial rewards rGshug, and forced-trial choices aGshug.
Unshaded nodes correspond to unobserved variables whose values are inferred by the model.
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learning rate parameter is related to the strength of the prior, with a lower value indicative of a

stronger prior. Full details of the model and fitting procedure are outlined in the Supplementary

Materials. In the next subsections, we describe the learning and decision-making components

of the model in more detail.

Learning Component

The learning component of the model assumes that participants learn the values for the mean

reward of each option using the Kalman filter algorithm. The Kalman filter (Kalman, 1960) has

been used to model learning in other learning tasks (Lee, Gold, & Kable, 2020) as well as other

explore/exploit tasks (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006) and is a popular

model of Bayesian learning, as it is both analytically tractable and easily relatable to the delta-

rule update equations of reinforcement learning.

More specifically, the Kalman filter assumes a generative model in which the rewards

from each bandit, rt, are generated from a Gaussian distribution with a fixed standard devia-

tion, σr, and a mean, mi
t, that is different for each bandit, i, and can vary over time. The time

dependence of the mean is determined by a Gaussian random walk with mean 0 and standard

deviation σd. Note that this generative model, assumed by the Kalman filter, is different from

the true generative model used in the Horizon Task, in which the mean reward of each bandit

is constant over time; that is, in the Horizon Task, σd = 0. This mismatch between the assumed

and actual generative models is quite deliberate and allows us to account for the suboptimal

learning of the subjects. In particular, this mismatch introduces the possibility of a recency

bias (when σd > 0) whereby more recent rewards are overweighted in the model’s estimate of

the mean reward, Ri
t, of each bandit. Note that Ri

t corresponds to the estimated mean reward

after t trials (i.e., after the model has seen t trials).

The actual equations of the Kalman filter model are straightforward. The model keeps

track of an estimate of both the estimated mean reward, Ri
t, of each option, i, and the un-

certainty in that estimate, σi
t. When option i is played on trial t, these two variables update

according to

Ri
t = Ri

t +

(

σi
t

σr

)2

(rt − Ri
t−1) (1)

1

(σi
t)

2
=

1

(σi
t−1)

2 + σ2
d

+
1

σ2
r

. (2)

When option i is not played on trial t, we assume that the estimate of the mean stays

the same but that the uncertainty in this estimate grows as the generative model assumes the

mean drifts over time. Thus, for unchosen option i, we have

Ri
t = Ri

t−1

1

(σi
t)

2
=

1

(σi
t)

2 + σ2
d

.

When the option is played, the update Equation 1 for Ri
t is essentially just a “delta

rule” (Rescorla & Wagner, 1972; Schultz,Dayan, & Montague, 1997), with the estimate of the

mean being updated in proportion to the prediction error, rt − Ri
t−1. This relationship to the
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reinforcement learning literature is made more explicit by rewriting the learning equations in

terms of the time varying learning rate:

αi
t =

(σi
t)

2

σ2
r

.

Written in terms of this learning rate, Equations 1 and 2 become

Ri
t = Ri

t−1 + αi
t(rt − Ri

t−1)

and
1

αi
t

=
1

αi
t−1 + αd

+ 1,

where

αd =
σ2

d

σ2
r

.

The learning model has four free parameters: the noise variance, σ2
r , the drift variance,

σ2
d, and the initial values of the estimated reward, R0, and uncertainty in that estimate, σ2

0. In

practice, only three of these parameters are identifiable from behavioral data, and we will find

it useful to reparameterize the learning model in terms of R0 and an initial, α1, and asymptotic,

α∞, learning rate. In particular, the initial value of the learning rate relates to σ0, σr, and σd as

α1 =
σ2

0 + σ2
d

σ2
0 + σ2

d + σ2
r

.

While the asymptotic value of the learning rate, which corresponds to the steady state value

of αi
t if option i is played forever, relates to αd (and hence σr and σd) as

α∞ =
1

2

(

−αd +
√

α2
d + 4αd

)

.

Although this choice to parameterize the learning equations in terms of α1 and α∞ is somewhat

arbitrary, we feel that the learning rate parameterization has the advantage of being slightly

more intuitive and leads to parameter values between 0 and 1, which are easier to interpret.

Decision Component

Once the average reward of each option, Ri
t, has been estimated from the outcomes of the

forced-choice trials, the model makes a decision using a simple logistic choice rule:

p(choose right) =
1

1 + exp (βR∆R + βI∆I + βS)
,

where ∆R = Rleft
t−1 − R

right
t−1 is the difference in predicted reward between left and right options

(note that the predicted reward for bandit i on time t is Ri
t−1) and ∆I is the difference in infor-

mation between left and right options (which we define as +1 when left is more informative,

−1 when right is more informative, and 0 when both options convey equal information in

the [2 2] condition). Note that we code information, ∆I, as a categorical variable, not as a

continuous variable. While in principle, ∆I should be a continuous variable, proportional to

the uncertainty in each of the options σleft
t − σ

right
t (Gershman, 2019), in practice, the range of

uncertainties in the Horizon Task is too small to dissociate the continuous from the categorical

formulation.
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The three free parameters of the decision process are the reward weight, βR, the infor-

mation weight, βI , and the spatial bias weight, βS. Thus, the decision component of the model

has 10 free parameters (βI in the two horizon conditions, and βR and βS in the four Horizon×

Uncertainty conditions). These parameters were fit for each subject using a hierarchical Bayesian

approach outlined in detail in the Supplementary Materials. Directed exploration is then quan-

tified as the change in informationweight with horizon, while random exploration is quantified

as the change in reward weight with horizon. We assume that these three decision parame-

ters can take on different values in the different horizon and uncertainty conditions (with the

proviso that βI is undefined in the [2 2] information condition, because ∆I = 0).

RESULTS

Overall Measures of Experimental Task Performance

Overall, HVs Performed Better Than PSZ, but This Difference in Performance Did Not Change Over the

Course of the Game All groups chose the objectively correct (higher value) option more often

than would be predicted by chance (controls, mean fraction correct = 0.71; patients, 0.68),

both ps < 0.001. Participants also showed evidence of learning, manifest by an increase in

performance as a function of time (Figure 3A), p < 0.001, that was qualitatively consistent with

the previously reported behavior of healthy young adults (Wilson et al., 2014). Overall, HVs

performed better than PSZ, as indicated by a main effect of group, F1,695 = 8.53, p = 0.004,

but this difference in performance did not change over the course of the game (interaction

between group and trial number, F5,695 = 1.11, p = 0.35).

Measures of Directed and Random Exploration

PSZ Showed Reduced Directed Exploration Relative to HVs As noted above, our main analy-

ses (repeated-measures ANOVAs with horizon as a within-subjects factor and group as a

between-subjects factor) focused on behavior on the first free choice as a function of hori-

zon. These analyses revealed that patients with schizophrenia showed reduced directed ex-

ploration, relative to HVs, as main effects of group, F1,139 = 8.83, p = 0.003, and horizon,

F1,139 = 68.2, p < 0.001, on p(high info) were qualified by a significant Group × Horizon in-

teraction, F1,139 = 6.41, p = 0.012. As shown in Figure 3B, PSZ showed lower information

Figure 3. Performance on the Horizon Task by diagnostic group. A) Proportions of optimal re-
sponses as a function of trial number for Horizon 1 (filled circles) and Horizon 6 (open circles)
games. B, C) Model-free analysis of the first free choice as a function of horizon, with B show-
ing proportions of high-information (information seeking) choices and C showing proportions of
low-mean choices (indicative of behavioral variability).
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seeking during Horizon 6 games, t139 = 3.20, p = 0.002, and, to a lesser extent, during Hori-

zon 1 games, t139 = 2.26, p = 0.026. Moreover, PSZ showed a reduction in the change in

p(high info) with horizon, t139 = 2.53, p = 0.012, consistent with less directed exploration in

patients.

PSZ and HVs Did Not Differ in Random Exploration Consistent with prior reports, the entire

sample of participants showed increased behavioral variability with horizon (increases in low-

mean value choices with increased uncertainty), F1,139 for main effect of horizon = 44.91, p <

0.001. Furthermore, patients showed greater overall behavioral variability relative to controls,

F1,139 for main effect of group = 3.99, p = 0.05. However, as shown in Figure 3C, the two

groups did not differ in the impact of horizon on behavioral variability, as the interaction

between horizon and group was not significant, F1,139 = 0.70, p = 0.403. Thus, there was no

evidence that the two groups differed in their levels of random exploration.

Identification of Patient Subgroups Based on Ambiguity Aversion

Twenty-one Percent of Patients Exhibit a Form of Extreme Ambiguity Aversion, in Which They Almost

Never Chose More Informative Options In addition to examining between-group differences in

directed and random exploration, we looked at individual differences in directed and random

exploration. In Figure 4A, we plot p(high info) in Horizon 6 against p(high info) in Horizon 1.

In Figure 4B, we do the same thing for p(low mean). In these plots, each point corresponds

to a participant, and the diagonal line is the line of equality. Thus, points above the diagonal

line correspond to subjects showing increased directed (90.9% community controls, 73.1%

patients) or random (66.7% community controls, 67.6% patients) exploration with horizon.

The most striking feature of Figure 4A is the separation of two groups of subjects with regard to

directed exploration: a group of 25 participants showing extreme ambiguity aversion [p(high

info) < 0.25 for both Horizon 1 and Horizon 6], at the bottom left, and a group of non-AA

participants, in the center of the plot, accounting for the majority of participants from both

diagnostic groups (93.9% community controls, 78.7% patients), exhibiting behavior similar to

Figure 4. Percentages of information choices. A) Percentages of high-information choices at
Horizon 1 plotted against those at Horizon 6, in patients (red crosses) and controls (blue circles).
While most participants make more high-information choices at Horizon 6 than at Horizon 1, a
subset of participants (predominantly schizophrenia patients) make few high-information choices
in both horizon conditions. These individuals were said to be “ambiguity averse.” B) Percentages of
low-mean-value choices at Horizon 1 plotted against those at Horizon 6, in patients (red crosses)
and controls (blue circles).
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what we have previously seen in students and younger teens (Somerville et al., 2017; Wilson

et al., 2014). This clustering into two groups based on p(high info) was supported by additional

clustering analysis using k-means and Gaussian mixture model analysis (see Supplementary

Materials for details). In brief, our by-eye heuristic was more conservative than k-means (which

puts two more subjects in the AA group) and less conservative than Gaussian mixtures (which

puts three fewer subjects in the AA group). For this reason, we retained the original heuristic

as the cutoff in the article. Regardless of the clustering, the qualitative results are the same.

Participants in the AA group almost never chose the more ambiguous (and hence higher

information) option. This group of 25 individuals has many more patients (n = 23, 21.3%

of patients) than community controls (n = 2, 6.1% of community controls). Such extreme

ambiguity aversion has not been seen before in either student or adolescent populations in

this same task (Somerville et al., 2017; Wilson et al., 2014).

Ambiguity aversion had a clear impact on performance, as AA patients chose the objec-

tively high reward option much less frequently than non-AA patients, t106 = 6.86, p < 0.001

(Figure 5A). In addition, AA patients exhibited impaired learning over the course of the game,

F5,530 for Group × Trial Number = 4.32, p < 0.001. Nevertheless, overall performance in AA

patients was above chance, indicating at least some engagement with the task (mean fraction

correct = 0.63), t-test relative to chance t22 = 21.10, p < 0.001. Critically, however, despite

large differences in measures of directed exploration (by definition, and see Figure 5B), AA and

non-AA patients did not differ on measures of random exploration, t106 = 1.140 for Σp(low

mean), t106 = −0.614 for ∆p(low mean; Figure 5C). Both groups showed evidence of an ef-

fect of horizon on random exploration, with increased variability for Horizon 6 compared to

Horizon 1, non-AA t84 = 6.18, p < 0.001; AA t22 = 4.53, p < 0.001.

Model-based analyses further reinforced the above interpretation, revealing that AA pa-

tients showed no evidence for information seeking in any context. Consistent with model-free

measures of directed and random exploration, model-based analyses indicated that AA pa-

tients showed no evidence for information seeking in any context (Figure S3). Specifically, for

the AA patients, we observed reduced information weighting in both Horizon 1 and Horizon 6

relative to non-AA group patients (100% of samples less than zero, respectively). In addition,

AA patients showed much reduced reward weight in the [1 3] condition (100% of samples),

which is almost zero for most people in this group. Both results are consistent with the extreme

Figure 5. Comparison of experimental measures from the Horizon Task in ambiguity-averse (AA)
and non-AA patients. A) Overall Horizon Task performance in AA and non-AA patients. B) Directed
Exploration in AA and non-AA patients. C) Random Exploration in AA and non-AA patients.
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ambiguity aversion in this group and suggest that AA patients base their decisions almost ex-

clusively on avoiding the uncertain option in the [1 3] condition. Interestingly, reward weight

does not appear to differ between non-AA and AA patients in the [2 2] condition, consistent

with the ability of AA patients to perform quite well in this condition.

Among Non-AA Participants, There Was a Trend Toward a Main Effect of Diagnostic Group on

Performance Although the main group of (n = 85) non-AA patients showed evidence for

directed exploration (effect of horizon on choice of informative option t84 from one-sample

test on ∆p(high info) = 6.71), p < 0.001, their levels of overall performance, t114 = −2.49,

p = 0.015, and directed exploration, t114 for between-group difference in ∆p(high info) =

−2.454, p = 0.013, there was a trend toward a main effect of diagnostic group on perfor-

mance, F1,570 = 3.67, p = 0.058 (Figure S4A), suggestive of reduced performance, relative to

community controls. Among non-AA participants, the interaction between group and horizon

was not significant, F5,570 = 0.57, p = 0.721, however.

Next, we asked whether non-AA controls and non-AA patients showed differential effects

of horizon on directed exploration, finding that the interaction between group and horizon

trended toward significance, F1,114 = 2.81, p = 0.059 (Figure S4B). A post hoc t-test directly

comparing non-AA patients and non-AA controls revealed a significant between-group dif-

ference in the proportion of high-information choices at Horizon 6, two-sided t114 = 2.69,

p = 0.008. There was also a trend toward significantly elevated levels of behavioral variability

in non-AA patients relative to non-AA controls, F1,114 for main effect of diagnosis on Σp(low

mean) = 3.75, p = 0.055 (Figure S4C). However, the lack of a significant interaction between

subject type and horizon, F1,114 = 0.20, p = 0.66, indicates that non-AA patients, relative to

non-AA controls, did not differ in random exploration.

Consistent with the model-free measures, non-AA patients exhibited reduced directed

exploration relative to controls, as indicated by a reduction in the information weight, βI ,

in Horizon 6 (96.5% of samples for the mean information weight of non-AA group patients

below those for non-AA group controls; Figure S5). As expected, non-AA patients and non-

AA controls differed in their levels of educational attainment and on multiple measures of

cognitive performance (Table S1).

In PSZ, Information-Seeking Behavior Was Related to Measures of Intellectual Function Other than

task performance, what distinguished AA patients from non-AA patients? Surprisingly, we

found that the two patient subgroups identified based on AA scores did not differ on any

symptom measure (effect sizes d = −0.23–0.17), including ratings for avolition/anhedonia,

t106 = 0.557. The two groups differed greatly, however, on measures of intellectual function,

including estimates of current IQ (from the WASI) and premorbid IQ (from the WTAR and the

Reading subtest of the WRAT; see Table 2). Furthermore, we observed significant differences

between AA and non-AA patients on composite scores and working memory domain scores

from the MATRICS battery, t106 = 2.53, p = 0.013.

Relationships Among Measures of Explore/Exploit Behavior, Cognition, and Symptoms

In PSZ, Random Exploration Was Related to Positive Symptom Severity Finally, we looked at the

correlations between cognitive and symptom measures and both the model-free and model-

based measures of behavior. We observed one systematic relationship between a clinical

symptom measure and a measure of information seeking: Mean negative symptom scores

correlated negatively with change in information weight, a model-based measure of directed
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Table 2. Demographic, cognitive, and clinical measures in patient subgroups

Measure Non-AA patientsa AA patientsb Inferential statistic

Demographic

Age, years, M(SD) 36.7 (10.3) 38.3 (9.6) t = 0.672

Gender 26 female, 59 male 10 female, 13 male χ
2 = 1.353

Race 47 C, 27 AFA, 3 AS, 7 M/O 6 C, 16 AFA, 1 AS, 0 M/O χ
2 = 11.489∗∗

Subject education, M (SD) 13.3 (2.1) 13.0 (2.1) t = 0.675

Parental education, M (SD) 14.6 (2.7) 13.5 (3.4) t = 1.611

Cognitive, M(SD)

WASI estimated IQ (four subtests) 96.1 (14.7) 88.9 (10.0) t = 2.721∗∗

WRAT-Reading scaled score 98.6 (15.5) 91.8 (10.5) t = 2.457∗

WTAR scaled core 101.0 (17.6) 91.8 (15.6) t = 2.268∗

MATRICS composite score 33.9 (13.2) 29.1 (9.6) t = 1.621

MATRICS working memory 41.0 (10.6) 35.0 (8.1) t = 2.527∗

MATRICS processing speed 38.6 (13.0) 36.0 (10.3) t = 0.895

Clinical, M(SD)

BPRS mean item score—all items 1.7 (0.4) 1.7 (0.5) t = 0.334

BPRS mean item score—Psychosis 2.1 (1.2) 2.3 (1.2) t = 0.663

BPRS mean item score—Depression 1.8 (0.9) 2.1 (1.1) t = 1.180

SANS mean item score—all items 1.5 (0.7) 1.5 (0.6) t = 0.184

SANS mean item score—Avolition/Anhedonia 2.0 (0.9) 1.9 (0.7) t = 0.557

Note. AA = ambiguity averse; AFA = African American; AS = Asian; BPRS = Brief Psychiatric Rating Scale; C = Caucasian;

MATRICS = Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery; M/O =

mixed/other; SANS = Scale for the Assessment of Negative Symptoms; WASI = Wechsler Abbreviated Scale of Intelligence; WRAT-

Reading = Wide-Ranging Achievement Test, Reading Subtest; WTAR = Wechsler Test of Adult Reading.
an = 85. bn = 23.

*p < 0.05. **p < 0.01.

exploration, such that patients with higher levels of negative symptoms showed reduced di-

rected exploration (Table 3). We observed several significant correlations between clinical

symptom severity and measures of behavioral variability (random exploration). Specifically,

we observed a significant correlation between the model-free measure of behavioral variability

[Σp(low mean)] and the positive symptom cluster score from the BPRS (from the factor analysis

of McMahon et al., 2002), rho106 = 0.23, p = 0.015. We also observed significant correlations

between the model-free measure of random exploration [∆p(low mean)] and both the posi-

tive symptom cluster score from the BPRS (from the factor analysis of McMahon et al., 2002),

rho106 = 0.39, p < 0.001 (Figure 6A) and the overall BPRS score, rho106 = 0.29, p = 0.002. We

observed significant negative correlations between positive symptom scores from the BPRS

and several model-based measures of behavioral variability and random exploration (Table 3).

Finally, we observed a significant negative correlation between a model-based measure of per-

formance (the initial learning rate, α1) and both the positive symptom cluster score from the

BPRS and the overall BPRS score (Figure 6B). As noted in the Methods, the initial learning

rate parameter is related to the strength of the prior, with a lower value indicative of a stronger

prior. Thus, a significant negative association between the learning rate and positive symptoms
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Table 3. Analyses of correlations between model-free and model-based measures of experimental behavior and clinical variables in patients
in the Horizon Task

SANS

BPRS BPRS BPRS SANS Avolition/

overall Psychosis Depression overall Anhedonia

Variable mean item mean item mean mean item mean

Model-based measures of performance

Prior mean 0.03 0.02 −0.09 0.05 0.10

Initial learning rate −0.25∗∗ −0.28** −0.10 −0.06 −0.08

Asymptotic learning rate 0.08 0.09 0.03 −0.03 −0.03

Model-free measures of information seeking/directed exploration

Overall information seeking [Σp(high info)] 0.01 0.01 −0.04 0.02 0.06

Directed exploration [∆p(high info)] 0.06 0.03 0.12 −0.05 −0.06

Model-based measures of information seeking/directed exploration

Information weight (Horizon 1) −0.02 −0.01 −0.14 0.04 0.08

Information weight (Horizon 6) 0.01 0.05 0.01 −0.11 −0.06

Change in information weight 0.02 0.08 0.16 −0.19∗ −0.15

Model-free measures of behavioral variability/random exploration

Overall behavioral variability [Σp(low mean)] 0.17 0.23∗ 0.02 −0.01 −0.02

Random exploration [∆p(low mean)] 0.29∗∗ 0.39*** 0.19 −0.03 −0.03

Model-based measures of behavioral variability/random exploration

Reward weight (Horizon 1 [1 3]) −0.03 −0.10 −0.04 −0.01 0.04

Reward weight (Horizon 6 [1 3]) −0.04 −0.17 −0.09 0.13 0.14

Reward weight (Horizon 1 [2 2]) 0.09 0.11 0.08 0.11 0.12

Reward weight (Horizon 6 [2 2]) −0.25∗ −0.29∗∗ −0.20∗ 0.11 0.11

Change in reward weight ([1 3]) 0.01 −0.01 −0.09 0.14 0.12

Change in reward weight ([2 2]) −0.15 −0.20∗ −0.15 −0.02 −0.02

Note. Correlation values are Spearman coefficients. Correlations illustrated in Figure 6 are bolded. BPRS = Brief Psychiatric Rating

Scale; SANS = Scale for the Assessment of Negative Symptoms.

*p < 0.05. **p < 0.014. ***p < 0.001.

is especially intriguing, as it implies that increased positive symptoms are associated with a

stronger effect of the prior (indicated by lower α1). This finding is consistent with the results of

several earlier studies (Baker et al., 2019; Powers et al., 2017) as well as theoretical accounts

of inference in schizophrenia (Corlett et al., 2019; Fletcher & Frith, 2009; Jardri & Deneve,

2013), suggesting that positive symptoms are related to (and perhaps even caused by) overly

strong priors. The presence of overly strong priors in a subset of patients may explain why pa-

tients showed similar rates of random exploration, but reduced rates of directed exploration,

relative to controls.

Correlations Between Cognitive Variables and Behavior in the Patient Group As shown in Table 4,

we observed multiple significant correlations between standardized measures of intellectual

function and experimental measures of information seeking. Overall information seeking [Σp

(high info)] across the two-horizon condition correlated strongly with numerous measures of
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Figure 6. Relationships between cognitive and behavioral measures in patients. A) Composite
Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) scores
correlated positively with overall information seeking in both patients and controls. B) Composite
MATRICS scores correlated inversely with overall behavioral variability in both patients and controls.
C) Verbal Learning scores from the MATRICS correlated positively with directed exploration scores
in both patients and controls. D) Overall IQ estimates from the Wechsler Abbreviated Scale of
Intelligence (WASI) correlated positively with prior mean, a model-based performance metric. Also
in patients, ratings for psychotic symptoms correlated (E) positively with random exploration scores
and (F) negatively with initial learning rate, a model-based indicator of the strength of prior beliefs.
BPRS = Brief Psychiatric Rating Scale.

intellectual function, including estimates of current and premorbid IQ (from the WASI and

WTAR, respectively), a measure of cross-domain cognitive capacity (the MATRICS compos-

ite scores; Figure 6C), and measures of domain-specific abilities, from the MATRICS (Work-

ing Memory, Processing Speed, Attention and Vigilance, and Verbal Learning). With all of

these measures, patients with evidence of higher intellectual capacity showed greater over-

all information-seeking behavior. Horizon-dependent increases in directed exploration [as

measured by ∆p(high info)] also correlated with several measures of intellectual function: es-

timated current IQ from the WASI, MATRICS composite score, and MATRICS Verbal Learning

(Figure 6D); that is, patients with higher intellectual capacity were more likely to exhibit adap-

tive changes in information-seeking behavior, with longer horizon.

It is important to note that almost all measures of cognitive function showing positive

correlations with information-seeking behavior showed negative correlations with undirected

behavioral variability, as measured by Σp(low mean; see Table 4 and Figure 6E). Intellectual

variables in controls were also found to correlate positively with information-seeking behav-

ior and negatively with behavioral variability (see the Supplementary Results and Table S3).
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Table 4. Correlations between measures of experimental behavior and cognitive variables in patients in the Horizon Task

Overall Overall Directed Overall Random

Construct Performance Information Seeking Exploration Behavioral Variability Exploration

Variable Prior mean Σp(high info) ∆p(high info) Σp(low mean) ∆p(low mean)

WASI estimated IQ (four subtests) 0.385*** 0.387∗∗∗ 0.227∗ −0.292∗∗ 0.029

WTAR scaled score 0.248∗∗ 0.223∗ 0.210 −0.317∗∗∗ 0.102

MATRICS composite score 0.303∗∗ 0.351*** 0.212∗ −0.300** 0.001

MATRICS domain scores

Working Memory 0.292∗∗ 0.355∗∗∗ 0.186 −0.211∗ 0.079

Processing Speed 0.259∗∗ 0.276∗∗ 0.128 −0.239∗ −0.024

Attention/Vigilance 0.194∗ 0.257∗∗ 0.156 −0.295∗∗ −0.070

Verbal Learning 0.257∗∗ 0.336∗∗∗ 0.232* −0.059 0.189∗

Note. Correlation scores are Spearman correlation coefficients; correlations illustrated in Figure 6 are bolded. MATRICS = Measure-

ment and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery. WASI = Wechsler Abbreviated

Scale of Intelligence; WTAR = Wechsler Test of Adult Reading.

*p < 0.05. **p < 0.01. ***p < 0.001.

Finally, multiple strong correlations were also observed between standard cognitive measures

and model-based measures of performance in patients (Table S4). Specifically, patients exhib-

ited a significant correlation between a model-based measure of overall performance (the prior

mean parameter) and overall estimated IQ, from the WASI (Figure 6F). This same relationship

was observed in controls (Table S5).

DISCUSSION

In this article, we investigated the explore/exploit trade-off in patients with schizophrenia. In

particular, we asked whether patients differed from community controls in their tendency to

engage in directed and random exploration and in their overall level of uncertainty aversion

and behavioral variability. We found that patients, as a group, showed reduced information

seeking, reduced horizon-dependent directed exploration, and increased overall behavioral

variability, but no difference in horizon-dependent random exploration. That patients were

sensitive to horizon for random exploration is indicative that they understood the task and

acted appropriately when exploration was of more potential utility; they simply did not show

the same degree of directed/strategic exploration for information gain.

Indeed, a major driver of the difference between PSZ and HVs was the prevalence of

extreme ambiguity aversion in the PSZ population. Participants in this ambiguity-averse group

almost never chose the more informative option on the first, or later, free choice trials. Such be-

havior was rare in the HVs recruited for this study (only 2/33 showed extreme AA) and was not

apparent in previously reported studies in college students and adolescents (Somerville et al.,

2017;Wilson et al., 2014). Separating our subjects into three subgroups (non-AAHVs, non-AA

PSZ, and AA PSZ—the AA HV group was too small for meaningful analysis), we found that di-

rected exploration was absent in the AA PSZ, yet still significantly diminished in non-AA PSZ,

relative to non-AAHVs. In contrast, there were no differences in random exploration across the

three groups. This suggests that schizophrenia has a selective impact on directed exploration.
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Directed exploration has been shown to rely predominantly on prefrontal cortical mecha-

nisms (Daw et al., 2006), with rostrolateral PFC having been identified as one specific locus

(Badre, Doll, Long, & Frank, 2012; Zajkowski et al., 2017). Importantly, prefrontal processes

underlying uncertainty processing and decision-making have frequently been implicated in

abnormalities in learning and decision-making in schizophrenia (Hernaus et al., 2018; Krug

et al., 2014; Lancaster et al., 2016). If extreme ambiguity aversion does reflect a qualitatively

different decision-making process, then a key goal for future work should be to determine

exactly what that difference entails, from both cognitive and neural perspectives. Exploratory

analyses of the current dataset found no differences in symptommeasures in the AA PSZ group

and the main group of PSZ, but these groups did differ on measures of current and premorbid

IQ, as well as current working memory function.

Furthermore, we observed a number of significant correlations between experimental

measures of behavior and symptom scores. Of particular interest was the negative correlation

between positive symptoms and the initial learning rate in the model. A higher initial learning

rate in PSZ with greater positive symptoms is consistent with the idea that more psychotic

patients use stronger prior beliefs (Baker et al., 2019; Powers et al., 2017). According to our

framework, the strength of priors is negatively correlated with learning rate, such that overly

strong priors would be associated with a reduced impact of PEs and reduced updating. Thus,

it would take many more large PEs to adapt the posterior. This is because the strength of the

prior is represented by the variance about the mean expected value, rather than the mean itself

and is thus more likely to influence the impact of the prediction error (the learning rate) than

the magnitude of the prediction error.

We also found that measures of random, but not directed, exploration showed posi-

tive correlations with psychotic symptom severity, such that more psychotic patients exhibited

more random exploration. This result suggests that more psychotic patients may exhibit more

unsystematic behavioral variability, in conditions with greater uncertainty (i.e., longer hori-

zons), as a compensatory mechanism for an overall reduced ability/tendency to engage in

greater information-seeking behavior. Further tests of these ideas could come from studies

using measures of psychosis-like phenomena in healthy individuals, such as the Peters Delu-

sions Inventory (Peters, Joseph, Day, & Garety, 2004) or the Cardiff Anomalous Perceptions

Scale (Bell, Halligan, & Ellis, 2006), or in studies involving samples of psychosis patients and

controls, where symptom data are available for both groups.

Contrary to our hypotheses, we did not observe strong correlations between experimen-

tal measures of exploration and negative symptom severity. In our previous work (Strauss et al.,

2011), we observed a significant correlation between the severity of clinically rated anhedo-

nia and a computational measure of uncertainty-driven exploration. However, that task was

not designed to dissociate uncertainty aversion from reduced directed exploration, per se. The

results of the current study suggest that uncertainty aversion may contribute substantially to

deficits in goal-directed exploration, in psychotic illness. Of note, we also did not observe

strong correlations between negative symptom severity and experimental measures of random

exploration, in either a positive or negative direction; that is, the effect of uncertainty (hori-

zon) on the tendency to engage in unsystematic behavioral variability was not a function of the

severity of motivational deficits in PSZ. Whereas measures of directed and random exploration

were found to be largely unrelated to measures of motivational deficits in PSZ, we observed

numerous systematic relationships between measures of exploration and measures of intellec-

tual function. Specifically, we found that most cognitive measures correlated positively with

measures of directed exploration but negatively with measures of random exploration. These
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results indicate that strategic information-seeking behavior is most characteristic of individuals

with the greatest capacity to use information to guide learning and behavior. By contrast, ran-

dom exploration was most prominent in PSZ with the most severe cognitive impairment. In

short, a critical manner in which schizophrenia impacts learning is by reducing information-

seeking behavior. The question of whether reduced information-seeking behavior is a cause

or consequence of deficits in working memory, selective attention, and processing speed, for

example, has not been resolved, however.

Study Limitations

Our study had a number of limitations that could affect the generalizability of our results.

Specifically, the gambles in the Horizon Task involved only gains and no losses. Thus, we

cannot discern whether such a large group of participants would show extreme ambiguity

aversion with regard to potential losses.

Second, one might question whether the extreme ambiguity-aversion behavior reflects a

qualitatively different decision-making process, such as a failure to understand the task. While

the present data cannot rule out this interpretation, we believe that it is unlikely to account for

the observed effects. Of note, participants in the AA group performed particularly well, if not

better than controls, in the equal information condition (i.e., when there was no difference in

uncertainty between the options). Thus, participants in the AA group were able to choose the

more rewarding option very effectively when the estimation of expected value depended solely

on the integration of previous outcomes and was not influenced by the amount of information

about either option. Nonetheless, task performance in PSZ may have been aided by additional

training or informational displays designed to reduced working memory demands, and future

studies on this topic should include the use of debriefing methods, such as quizzes, to identify

participants who fail to fully comprehend the task and exhibit poor performance for nonspecific

reasons.

Third, while correlation analyses revealed no significant effects of antipsychotic medi-

cation type or dosage on any of our dependent variables, definitively identifying or ruling out

influences of psychotropic medications on experimental measures of exploration (especially

given known effects of norepinephrine-modulating drugs on exploratory behavior; Warren

et al., 2017) would require either studies involving antipsychotic-naive patients or controlled

clinical trials.

Summary

In summary, our findings suggest that schizophrenia has dissociable effects on directed explo-

ration and random exploration. Such a dissociation between the two types of exploration is

consistent with a number of our earlier findings (Somerville et al., 2017; Warren et al., 2017;

Zajkowski et al., 2017). While the full extent of the neural circuits underlying directed and

random exploration is currently unknown, a key question for future work will be to determine

whether the changes in explore/exploit behavior seen here in PSZ are related to specific aspects

of brain function.
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