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ABSTRACT
Gambling disorder is associated with deficits in reward-based learning, but the underlying 
computational mechanisms are still poorly understood. Here, we examined this issue 
using a stationary reinforcement learning task in combination with computational 
modeling and functional resonance imaging (fMRI) in individuals that regular participate 
in gambling (n = 23, seven fulfilled one to three DSM 5 criteria for gambling disorder, 
sixteen fulfilled four or more) and matched controls (n = 23). As predicted, the gambling 
group exhibited substantially reduced accuracy, whereas overall response times (RTs) 
were not reliably different between groups. We then used comprehensive modeling using 
reinforcement learning drift diffusion models (RLDDMs) in combination with hierarchical 
Bayesian parameter estimation to shed light on the computational underpinnings of this 
performance deficit. In both groups, an RLDDM in which both non-decision time and decision 
threshold (boundary separation) changed over the course of the experiment accounted 
for the data best. The model showed good parameter and model recovery, and posterior 
predictive checks revealed that, in both groups, the model accurately reproduced the 
evolution of accuracies and RTs over time. Modeling revealed that, compared to controls, 
the learning impairment in the gambling group was linked to a more rapid reduction in 
decision thresholds over time, and a reduced impact of value-differences on the drift rate. 
The gambling group also showed shorter non-decision times. FMRI analyses replicated 
effects of prediction error coding in the ventral striatum and value coding in the ventro-
medial prefrontal cortex, but there was no credible evidence for group differences in these 
effects. Taken together, our findings show that reinforcement learning impairments in 
disordered gambling are linked to both maladaptive decision threshold adjustments and 
a reduced consideration of option values in the choice process.
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INTRODUCTION
Gambling disorder is a behavioral addiction that shares core neurobiological features with 
substance-use-disorders (Fauth-Bühler et al., 2017). Neuroimaging studies have often reported 
functional and to a lesser degree structural alteration in regions of the reward system in disordered 
gambling (Clark et al., 2019), in particular in the ventral striatum and the ventromedial prefrontal 
cortex (vmPFC), regions implicated in reinforcement learning and reward valuation (Bartra et al., 
2013; Clithero & Rangel, 2014). However, as summarized extensively in a recent review (Clark et 
al., 2019), the directionality of dysregulation in these circuits in gambling disorder is mixed, with 
studies reporting both increases and decreases in responses. These inconsistencies likely depend 
on task-specific and contextual effects (Leyton & Vezina, 2013; Miedl et al., 2012, 2014), as 
extensively discussed previously (Balodis et al., 2012; Leyton & Vezina, 2012; van Holst, Veltman, 
van den Brink, et al., 2012).

Behaviorally, gambling disorder is characterized by maladaptive decision-making in a range 
of laboratory tasks. This includes increased temporal discounting (i.e. an increased preference 
for smaller-sooner over larger-later rewards) (Alessi & Petry, 2003; Dixon et al., 2003; Holt et 
al., 2003; MacKillop et al., 2011; Miedl et al., 2012; Wiehler & Peters, 2015), and increased risk-
taking (Ligneul et al., 2012; Miedl et al., 2012; Wiehler & Peters, 2015). There is also evidence of 
impairments in feedback-based learning tasks in disordered gambling, such as on the Wisconsin 
Card Sorting Test (WCST) (Alvarez-Moya et al., 2010; Boog et al., 2014; Goudriaan et al., 2005; 
Hur et al., 2012; Ledgerwood et al., 2012; Zhou et al., 2016). Likewise, gambling disorder is 
associated with impairments in probabilistic reversal learning (Boog et al., 2014; de Ruiter et al., 
2009), and reductions in directed (strategic) exploration in reinforcement learning (RL) (Wiehler et 
al., 2021). Although there is some heterogeneity across studies with respect to reversal learning 
impairments, the general directionality of these effects is quite consistent in the literature (van 
Timmeren et al., 2018).

From a computational reinforcement learning perspective (Sutton & Barto, 2018), such reversal 
learning impairments in gambling disorder could arise due to changes in several different 
processes. On the one hand, impairments could be due to response perseveration, where previous 
actions are repeated irrespective of learned values. Additionally, however, reinforcement learning 
requires balancing exploration (choosing options with unknown value for information gain) and 
exploitation (choosing options with known value for reward maximization) (Schulz & Gershman, 
2019; Sutton & Barto, 2018; Wilson et al., 2021). Gambling disorder is linked to a reduction in 
directed exploration (Wiehler et al., 2021), and learning impairments could therefore also be due 
to reduced exploration. Finally, lower learning rates, an overall a reduced consideration of option 
values in the decision process, or more liberal decision thresholds (e.g. a focus on speed rather 
than accuracy) could likewise underlie impairments in disordered gambling (Hales et al., 2023).

Traditionally, RL models account for trial-wise categorical decisions by assuming that choices 
stochastically depend on the values of the available options. These values are learned via e.g. 
the delta learning rule, where values are updated based on reward prediction errors (Sutton 
& Barto, 2018). This learning rule is then combined with a choice rule such as softmax action 
selection (Sutton & Barto, 2018), where the slope parameter indexes the “value-dependency” or 
“stochasticity” of decisions with respect to the values implied by a given model. However, such 
choice rules are agnostic with respect to the computational processes underlying changes in 
“stochasticity” (Pedersen et al., 2017).

For this reason, recent work has begun to take the distribution of choice response times (RTs) 
into account. Sequential sampling models such as the drift diffusion model (DDM) (Forstmann 
et al., 2016; Ratcliff & McKoon, 2008) are widely used in perceptual decision-making. These 
models assume that choices arise from a noisy evidence accumulation process that terminates 
as soon the accumulated evidence exceeds a threshold. In its simplest form, the DDM has three 
free parameters. The drift rate v reflects the average rate of evidence accumulation. The decision 
threshold (boundary separation) parameter α governs the response threshold, and thus controls 
the speed-accuracy trade-off – a lower threshold emphasizes speed over accuracy, whereas the 
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reverse is true for a higher threshold. The non-decision time τ models perceptual and/or motor 
components or the RT that are unrelated to the evidence accumulation process. If one assumes 
that the quality of evidence in favor of a decision option is reflected in the trial-wise drift rate (via 
some linking function (Miletić et al., 2020)), the DDM can be used to model trial-wise decisions in 
reinforcement learning (Fontanesi, Gluth, et al., 2019; Pedersen et al., 2017; Shahar et al., 2019) 
and value-based decision-making more generally (Peters et al., 2020; Peters & D’Esposito, 2020; 
Wagner et al., 2020). The benefits of such an approach over softmax choice rules are both of 
technical and theoretical nature. In technical terms, inclusion of RTs during model estimation 
improves parameter recovery and reliability (Ballard & McClure, 2019; Shahar et al., 2019), which is 
of particular relevance when the number of observations is small, e.g. when working with clinical 
samples. In theoretical terms, a combined reinforcement learning DDM (RLDDM) is not only a more 
complete model, as it accounts for both binary decisions and RTs, but also allows for a more fine-
grained analysis of the dynamics underlying the decision process. For example, choices could be 
more random or stochastic due to a reduced impact of values on drift rates or due to a more 
liberal decision threshold (lower boundary separation). RLDDMs can dissociate these different 
possibilities, whereas softmax choice rules only contain a single “stochasticity” parameter, and 
thus cannot disentangle effects of value-dependency from threshold changes. DDMs can reveal 
alterations in decision-making following prefrontal cortex damage (Peters & D’Esposito, 2020) 
and following pharmacological dopamine challenges (Chakroun et al., 2023; Peters et al., 2020; 
Wagner et al., 2020). Specifically, increasing dopamine neurotransmission via a pharmacological 
challenge (Chakroun et al., 2023) or via supplementation with the catecholamine precursor 
tyrosine (Mathar et al., 2022) resulted in reduced decision thresholds. RLDDMs can also reveal 
pharmacological effects on learning in attention-deficit hyperactivity disorder (Pedersen et al., 
2017) and contextual effects in reinforcement learning (Fontanesi, Gluth, et al., 2019; Fontanesi, 
Palminteri, et al., 2019). More generally, RLDDMs, and computational approaches in general, might 
provide novel insights into mechanisms underlying disordered gambling (Hales et al., 2023).

Here we leveraged this modeling scheme to comprehensively analyze the computational basis of 
reinforcement learning deficits in gambling disorder. A gambling group (n = 23) and a matched 
control group (n = 23) performed a stationary RL task (Chakroun et al., 2023; Pessiglione et al., 
2006) while brain activity was measured using functional magnetic resonance imaging (fMRI). 
The same participants also completed a restless four-armed bandit task, the results from which 
have been published earlier (Wiehler et al., 2021). In the stationary RL task, model-agnostic 
analyses revealed a substantial reduction in accuracy in the gambling group. Hierarchical Bayesian 
computational modeling revealed that an extension of previously proposed RLDDMs (Fontanesi, 
Gluth, et al., 2019; Miletić et al., 2020; Pedersen et al., 2017) that allowed both non-decision 
times and decision thresholds to vary over the course of learning accounted for the data best. 
This model showed good parameter and model recovery, and in both groups accounted for the 
evolution of accuracies and RTs over the course of learning. In this RLDDM, reduced performance 
in the gambling group was linked to a more rapid reduction in decision thresholds over time, and 
a reduced impact of value differences on the drift rate. FMRI replicated core effects of prediction 
error and value signaling in ventral striatum and ventro-medial prefrontal cortex across groups, 
but did not reveal credible evidence for group differences in these effects.

METHODS
PARTICIPANTS

In total, n = 23 individuals that regularly participate in gambling, and n = 23 matched controls 
took part in the study. All participants provided informed written consent prior to participation, 
and the study procedure was approved by the local institutional review board (Hamburg Board of 
Physicians, project code PV4720). Participants were recruited via postings in local internet bulletin 
boards, and reported no history of neurological or psychiatric disorder except for depression. No 
participants were currently undergoing any psychiatric treatment. Current drug abstinence on the 
day of testing was verified via a urine drug test.



26Wiehler and Peters  
Computational Psychiatry  
DOI: 10.5334/cpsy.104

The demographic and clinical characteristics of the groups have been reported in detail elsewhere 
(Wiehler et al., 2021). In short, groups were matched on age (M[SD] gambling: 25.91 [6.47], 
controls: 26.52 [5.92], t = –.33, p = .74), gender (all participants were male), self-reported smoking 
according to the Fagerström Test for Nicotine Dependence (FTND) (Heatherton et al., 1991) 
(M[SD] gambling: 2.14 [2.58], controls: 1.83 [2.18], t = .44, p = .66), self-reported alcohol use 
according to the Alcohol Use Disorders Test (AUDIT) (Saunders et al., 1993) (M[SD] gambling: 6.09 
[7.14], controls: 6.52 [4.57], t = –.24, p = .81) and education (school years M[SD] gambling: 11.64 
[1.77], controls: 11.91 [1.35], t = –.60, p = .55). The gambling group exhibited higher depressive 
symptoms according to self-report (Beck Depression Inventory (BDI-II) (Beck et al., 1996), M[SD] 
gambling: 15.41 [11.41], controls: 7.61 [7.94], t = 2.69, p = .01).

DSM-5 criteria were assessed via a semi-structured interview by a researcher with basic clinical 
training (A. W.). Sixteen individuals from the gambling group fulfilled four or more DSM-5 criteria for 
gambling disorder (i.e. meeting the DSM-5 threshold for disordered gambling). Seven individuals 
fulfilled one to three DSM-5 criteria. The severity of problem gambling symptoms was further 
characterized using two self-report scales, the German “Kurzfragebogen zum Glücksspielverhalten” 
(KFG) (Petry, 1996), where the gambling group exhibited substantially higher scores (M[SD] 
gambling: 25.90 [14.15], controls: 0.58 [0.32], t = 8.55, p < .001) and the South Oaks Gambling 
Screen (SOGS) (Lesieur & Blume, 1987), where the gambling group likewise showed substantially 
higher scores (M[SD] gambling: 8.64 [4.46], controls: 0.21 [0.54], t = 8.99, p < .001).

Due to an incidental finding during fMRI, which may have impacted spatial normalization, one 
control participant was excluded from the imaging data analysis. This participant was however 
retained for all behavioral and modeling analyses.

REINFORCEMENT LEARNING TASK

Following completion of our previously reported restless four-armed bandit task (Wiehler et al., 
2021), participants had a short break inside the scanner. Then they performed 60 trials in total of 
a stationary reinforcement learning task (Chakroun et al., 2023; Pessiglione et al., 2006) using two 
pairs of stimuli (n = 30 trials per pair). Per pair, one stimulus was associated with a reinforcement 
rate of 80% (optimal stimulus) whereas the other was associated with a reinforcement rate of 
20% (suboptimal stimulus). Options were randomly assigned to the left/right side of the screen, 
and trials from the two option pairs were presented in randomized order. Participants had three 
seconds to choose one of the two stimuli via button press (see Figure 1). Participants received 
binary feedback, either in the form the display of a 1€ coin (reward feedback, see Figure 1) or as a 
crossed 1€ coin (no reward feedback). A jitter of variable duration (2–6sec, uniformly distributed) 
was included following presentation of the selection feedback and following presentation of 
the reward feedback (see Figure 1). Prior to scanning, participants performed a short practice 
version of the task in order to familiarize themselves with the task and the response deadline. 
Participants received 10% of the collected 1€ coins as an additional performance-contingent 
financial compensation.

MODEL-AGNOSTIC STATISTICAL ANALYSES

Model-agnostic measures (accuracy, median RT) were analyzed using Bayesian Wilcoxon Rank-
Sum tests as impletemented in JASP (Wagenmakers et al., 2018) (Version 0.l6.3).

Figure 1 Illustration of a single 
trial from the reinforcement 
learning task. Stimuli were 
presented for a maximum of 
3sec, during which participants 
were free to make their 
selection. The selection was 
then highlighted for 500 ms, 
followed by a jitter of variable 
duration (2–6sec). Reward 
feedback was then presented 
for 3sec, followed by another 
jitter of variable duration (2-
6sec). Stimuli consisted of two 
pairs of abstract fractal images 
(80% vs. 20% reinforcement 
rate), which were presented 
in randomized order, and 
participants completed 30 trials 
per pair.
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Q-LEARNING MODEL

We applied a simple Q-learning model (Sutton & Barto, 2018) to formally model the learning 
process. Here, participants are assumed to update the value (Q-value, Eq. 1) of the chosen action 
i based on the reward prediction error δt computed on each trial t as the difference between the 
obtained reward rt and the expected reward Qi,t, weighted by the learning rate η:

, 1 , * ti t i tQ Q η δ+ = +  (1)

,t t i tr Qδ = −  (2)

Q-values of unchosen actions remain unchanged. Q-values were initialized with values of 0.5. As 
learning from positive and negative feedback is thought to depend on distinct striatal circuits (Frank 
et al., 2004; Maia & Frank, 2011), we also examined models with separate learning rates (η+, η–) 
for positive vs. negative prediction errors. Learning rates were estimated in standard normal space 
[–3, 3] and back-transformed to the interval [0, 1] via the inverse cumulative normal distribution 
function.

SOFTMAX ACTION SELECTION

Softmax action selection models the choice probability of the chosen action i on trial t as a sigmoid 
function of the Q-value difference (Sutton & Barto, 2018) between the optimal and suboptimal 
options:

( )
x ( )

1
1 e p [ ]*t

optimal suboptimal

P i
Q Q β

=
+ − −

 (3)

The inverse temperature parameter β models the degree to which choice probabilities depend 
on Q-values, such that choices are random for β = 0, and increasingly depend on the Q-value 
differences between options as β increases.

REINFORCEMENT LEARNING DRIFT DIFFUSION MODELS (RLDDMS)

We next set out to more comprehensively analyze choice dynamics underlying learning 
performance. To this end, we examined a set a reinforcement learning drift diffusion models 
(Chakroun et al., 2023; Fontanesi, Gluth, et al., 2019; Pedersen et al., 2017) (RLDDMs) in which the 
DDM replaces softmax action selection as the choice rule (Miletić et al., 2020). These models can 
account for the full response time (RT) distributions associated with decisions, and thus provide 
additional information regarding the dynamics of the choice process.

The upper response boundary was defined as selection of the optimal (80% reinforced) stimulus, 
whereas the lower response boundary was defined as selection of the suboptimal (20% reinforced) 
stimulus. RTs for choices of the suboptimal option where multiplied by –1 prior to model estimation, 
and we discarded for each participant the fastest 5% of trials. The reason is that fast responses 
that fall beyond the leading edge of the RT distribution can force the estimated non-decision time 
to adjust to accommodate these values, which can negatively impact model fit. In a null model 
without a learning component (DDM0), the RT on each trial t is then distributed according to the 
Wiener First Passage Time (wfpt):

 ( , , , )~tRT wfpt z vα τ  (4)

Here the decision threshold parameter α regulates the speed-accuracy trade-off, such that smaller 
values of α lead to faster but less accurate responses. The drift rate v reflects the quality of the 
evidence, such that greater values of v give rise to more accurate and faster responses. Note 
that in this model v is constant and not affected by learning. The non-decision time τ models 
RT components related to motor and/or perceptual processing and unrelated to the evidence 
accumulation process. The starting point parameter z models a bias towards one of the response 
boundaries. We fixed z at .5 as options were presented in randomized order on the left vs. right 
side of the screen, and an a priori bias towas optimal or suboptimal choices is not plausbile in this 
learning setting.
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Following earlier work (Chakroun et al., 2023; Pedersen et al., 2017) we then incorporated the 
learning process (Equations 1 and 2) in the DDM by setting trial-wise drift rates to be proportional 
to the difference in Q-values between optimal and suboptimal options using a simple linear linkage 
function (Chakroun et al., 2023; Miletić et al., 2020; Pedersen et al., 2017):

( )*t optimal suboptimalcoeffv v Q Q= −  (5)

vcoeff models the degree to which trial-wise drift rates scale with the value difference between 
options. The intuition is that as Q-value differences increase, accuracy should increase, and RTs 
should decrease. Conversely, when Q-values are similar (and response conflict is high) choices 
should be both more random and slower. Note that we also examined a non-linear mapping 
scheme proposed in earlier work (Fontanesi, Gluth, et al., 2019), but, as in earlier related work 
(Chakroun et al., 2023) these models failed to converge in our data. This is likely attributable to the 
lower trial numbers in the present study compared to previous implementations of non-linear drift 
rate scaling (Fontanesi, Gluth, et al., 2019; Peters & D’Esposito, 2020; Wagner et al., 2020).

We also examined two further extensions of the RLDDM that might capture additional RT effects 
unrelated to the learning process. These extensions were motivated by the observation that in 
the gambling group, RTs decreased over the course of the experiment, but this effect was only in 
part attributable to learning, such that models with constant α and τ did not fully reproduce RT 
changes in the gambling group (see posterior predictive checks below). Therefore, we examined 
whether allowing decision threshold (Fontanesi, Gluth, et al., 2019; Pedersen et al., 2017) and/or 
non-decision-time to vary over the course of the experiment according to a power function (as 
in previous work (Fontanesi, Gluth, et al., 2019; Pedersen et al., 2017)) could account for these 
effects. For the case of decision threshold α that varies across trials t, this yields

0 *
exp

t tαα α=  (6)

In the same vein, for the case of non-decision-time τ that varies across trials t, this yields

0 *
exp

t tττ τ=  (7)

Decision threshold and non-decision time start at values of α0 and τ0 on trial 1. Parameter values 
then change over trials according power functions with exponents αexp and τexp. The first case (Eq. 
6) captures the idea that, over time, participant’s decison thresholds might decrease due to e.g. 
impatience, fatigue or boredom with the task. The second case (Eq. 7) corresponds to the idea 
that motor and/or perceptual processes might speed up over time, e.g. due to practice effects, 
increased familiarity with the task or impatience.

Therefore, the model space included the null model (DDM0) and eight variants of the RLDDM, which 
differed according to learning rates (single vs. dual), decision thresholds (fixed vs. power function) 
and non-decision times (fixed vs. power function).

HIERARCHICAL BAYESIAN MODELS

Models were fit to all trials from all participants, separate for each group, using a hierarchical 
Bayesian modeling approach with group-level Gaussian distributions for all parameters. Posterior 
distributions were estimated using Markov Chain Monte Carlo as implemented in the JAGS 

Table 1 Overview of priors for 
group means.

PARAMETER GROUP-LEVEL PRIOR (μ) GROUP-LEVEL PRIOR (σ)

α0 Uniform (.01, 5) Uniform (.0001, 2)

αexp Uniform (–3, 3) Uniform (.0001, 2)

τ0 Uniform (0.1, 2) Uniform (.0001, 2)

τexp Uniform (–3, 3) Uniform (.0001, 2)

vcoeff Uniform (–100, 100) Uniform (.0001, 10)

η+, η_ Uniform (–3,3) Uniform (.0001, 4)
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software package (Plummer, 2003) (Version 4.3) using the Wiener module for JAGS (Wabersich 
& Vandekerckhove, 2014) distribution, in combination with Matlab (The MathWorks) and the 
matjags interface (https://github.com/msteyvers/matjags). For group-level means and standard 
deviations, we defined uniform priors over numerically plausible parameter ranges (see Table 1), 
and applied identical prior distributions for each group.

For each model and group, we ran two chains with a burn-in period of 50k samples and thinning 
factor of 2. 10k additional samples were then retained for further analysis. Chain convergence 
was assessed by examining the Gelman-Rubinstein convergence diagnostic R̂, and values of 
1 1.01R̂≤ ≤  were considered as acceptable for all group-level and individual-subject parameters. 
Relative model comparison was performed via the Widely Applicable Information Criterion (WAIC) 
and the estimated log pointwise predictive density (elpd) (Vehtari et al., 2017), an approximation 
of the leave-one-out cross-validation accuracy of the model.

PARAMETER RECOVERY SIMULATIONS

Parameter recovery simulations were conducted to ensure that known parameters underlying 
the data-generating process could be recovered using our modeling procedures. For this purpose, 
we simulated 10k full data sets from the posterior distribution of the best-fitting model. Ten of 
these simulated data sets were randomly selected, and re-fit with the same modeling procedure. 
Parameter recovery was then assessed in two ways. For subject-level parameters, we examined 
the correlation between generating and estimated parameters across all ten simulations. For 
group-level means and standard deviations, we examined whether the estimated 95% highest 
posterior density intervals contained the true generating parameter value.

MODEL RECOVERY SIMULATIONS

To ensure that the true data-generating model could be identified using our modeling procedures, 
model recovery analyses were conducted, focusing on the three best-fitting models (RLDDM 
4, RLDDM6 and RLDDM8). Twenty full datasets were simulated from each of the three models’ 
posterior distributions, and re-fit with all nine models from the model space. The percentage of 
simulations in which the true data-generating model was recovered was then taken as a measure 
of model recovery.

POSTERIOR PREDICTIVE CHECKS

Posterior predictive checks were performed to ensure that the best-fitting model captured key 
aspects of the data, again using data sets simulated from the model’s posterior distributions. For 
each simulated data set, we then computed for each group mean RTs and accuracies for bins of ten 
trials (averaging across 1k randomly selected simulated data sets), and compared these model-
predicted values to the observed data per group. Individual-participant posterior pedictive checks 
were carried out by overlaying simulated and observed individual-participant RT distributions, and 
by overlaying simulated and observed RT changes over the course of learning via five trial bins.

ANALYSES OF POSTERIOR DISTRIBUTIONS

Posterior distributions were analyzed in the following ways. Mean group differences along with 
95% highest density intervals and posterior probabilities for group differences > 0 are reported, 
where probabilities exceeding 95% are taken as evidence for an effect. For completeness, we 
also report directed Bayes Factors (dBFs) that quantify the relative evidence in favour of a group 
difference < 0 vs. a group difference > 0.

FMRI DATA ACQUISITION

MRI data were collected on a Siemens Trio 3T system using a 32-channel head coil. Participants 
performed a single run of 60 trials in total (following a short break, after completion of our previously 
reported task (Wiehler et al., 2021)). Each volume consisted of 40 slices (2 × 2 × 2 mm in-plane 

https://github.com/msteyvers/matjags
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resolution and 1-mm gap, repetition time = 2.47s, echo time 26 ms). We tilted volumes by 30° from 
the anterior and posterior commissures connection line to reduce signal drop out in the ventromedial 
prefrontal cortex and medial orbitofrontal cortex (Deichmann et al., 2003). Participants viewed the 
screen via a head-coil mounted mirror, and logged their responses via the index and middle finger 
of their dominant hand using an MRI compatible button box. High-resolution T1 weighted structural 
images were obtained following completion of the cognitive tasks.

FMRI PREPROCESSING

All preprocessing and statistical analyses of the imaging data was performed using SPM12 
(Wellcome Department of Cognitive Neurology, London, United Kingdom). As in our previous study 
in this sample (Wiehler et al., 2021), volumes were first realigned and unwarped to account for 
head movement and distortion during scanning. Second, slice time correction to the onset of the 
middle slice was performed to account for the shifted acquisition time of slices within a volume. 
Third, structural images were co-registered to the functional images. Finally, all images were 
smoothed (8 mm FWHM) and normalized to MNI-space using the DARTEL tools included in SPM12 
and the VBM8 template.

FMRI STATISTICAL ANALYSIS

Error trials were defined as trials were no response was made, or trials that were excluded from the 
computational modeling during RT-based trial filtering (see above, recall that for each participant, 
the fastest 5% of trials were excluded). Following earlier work (Chakroun et al., 2023), three first-
level general linear models (GLMs) were examined. GLM1 used the following regressors:

1) onset of the decision option presentation

2) onset of the decision option presentation modulated by chosen – unchosen Q-value

3) onset of the decision option presentation modulated by (chosen – unchosen Q-value)2

4) onset of the feedback presentation

5) onset of the feedback presentation modulated by model-based prediction error

6) onset of the decision option presentation for error trials

7) onset of the feedback presentation for error trials.

In GLM2, chosen – unchosen value was replaced with the average Q-value across options.

GLM3 used the following regressors:

1) onset of the decision option presentation

2) onset of the decision option presentation modulated by chosen – unchosen value

3) onset of the decision option presentation modulated by (chosen – unchosen value)2

4) onset of the feedback presentation for positive prediction errors

5) onset of the feedback presentation for negative prediction errors

6) onset of the feedback presentation for error trials.

Following earlier work using this task (Chakroun et al., 2023; Pessiglione et al., 2006), Q-values 
and prediction errors were computed using the posterior group-mean learning rates from the 
best-fitting final hierarchical Bayesian model (RLDDM8). Parametric modulators were z-scored 
within-subject prior to entering them into the first level model (Lebreton et al., 2019). Single-
subject contrast estimates were then taken to a second-level random effects analysis using the 
two-sample t-test model as implemented in SPM12. At the second level, the following z-scored 
covariates were included: age, depression as assessed via the Beck Depression Inventory II (BDI) 
(Beck et al., 1996), smoking behavior as assessed via the Fagerström Test for Nicotine Dependence 
(FTND) (Heatherton et al., 1991) and alcohol use as assessed via the Alcohol Use Disorders 
Identification Test (AUDIT) (Saunders et al., 1993).
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All contrasts are displayed at p < .001 (uncorrected) with k >= 10 voxels, and correction for multiple 
comparisons using the family-wise error rate (FWE) followed the same approach as in our earlier 
work (Chakroun et al., 2023) and used a single region-of-interest (ROI) mask provided by the Rangel 
Lab (https://www.rnl.caltech.edu/resources/index.html) that is based on two meta-analysis of 
reward valuation effects (Bartra et al., 2013; Clithero & Rangel, 2014). This mask covers core areas 
involved in reward processing, including bilateral ventral striatum, ventromedial prefrontal cortex, 
anterior cingulate cortex and posterior cingulate.

RESULTS
Behavioral data analysis and computational modeling proceeded in the following steps. We first 
analyzed model-free performance measures. Next, we carried out a detailed model comparison 
of a set of candidate reinforcement learning drift diffusion models (RLDDMs) and identified the 
best-fitting model. We then ran parameter and model recovery analyses to ascertain that the true 
data-generating parameters could be recovered, and ran posterior predictive checks to ensure 
that key patterns in the data could be reproduced by the best-fitting model. Finally, we examined 
the parameter posterior distributions and compared them between groups, before moving to the 
analysis of the fMRI data.

MODEL-AGNOSTIC ANALYSIS

RT distributions per group are shown in Figure 2a and 2b, with choices of the suboptimal option 
coded as negative RTs. While control group participants selected the optimal stimulus on around 
80% of trials (Figure 2c), participants from the gambling group only made around 68% correct 
choices. A Bayesian Wilcoxon Rank sum test confirmed moderate evidence for group differences 
in accuracy (BF10 = 6.67, Figure 2c) and total reward obtained (BF10 = 3.94, Figure 2d). For median 
RTs, in contrast, a Bayesian Wilcoxon Rank Sum test revealed anecdotal evidence for the null 
model (BF01 = 1.87, Figure 2e).

MODEL COMPARISON

We next compared a range of computational models (see methods section). As a reference, we first 
fit a null model (DDM0) without a learning component. Next, a set of reinforcement learning DDMs 
(RLDDMs) was examined that all included a linear mapping from Q-value differences to trial-wise 
drift rates (Chakroun et al., 2023; Miletić et al., 2020; Pedersen et al., 2017) (see Eq. 5). This modeling 
scheme incorporates the intuition that successful learning should decrease RTs and increase 
accuracies, and that accuracy should be higher and RTs shorter when making easier choice (i.e. 
when Q-value differences are larger). The model space included models with single vs. dual learning 
rates η (for positive vs. negative prediction errors), and models with fixed vs. modulated decision 
threshold α and non-decision times τ (see Eq. 6 and 7), yielding a total of eight RLDDMs (see Table 2).

Model comparison was performed using the estimated log pointwise predictive density (-elpd) 
(Vehtari et al., 2017) (Table 2). In both groups, RLDDM8 exhibited the lowest -elpd value. However, 
the 95% confidence intervals of the -elpd difference between the best model and the second-best 
models (RLDDM6 in the control group and RLDDM4 in the gambling group) overlapped with zero, 
indicating that the evidence in favour of RLDDM8 was overall not decisive.

Figure 2 Response time 
distributions (RT, in seconds) in 
the control group (a, blue) and 
the gambling disorder group 
(b, red) with choices of the 
suboptimal options coded as 
negative RTs. c: Accuracy per 
group (chance level is 0.5). d: 
Total rewards earned per group. 
e: Median RTs per group.

https://www.rnl.caltech.edu/resources/index.html
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Despite this inconclusive model comparison, we focused all remaining analyses on RLDDM8, for 
the following reasons. First, in the control group, the overlap in -elpd between RLDDM6 and 8 was 
numerically very small. Second, model recovery was substantially better for RLDDM8 than RLDDM4 
and RLDDM6 (see below). Third, RLDDM4 and 6 are nested versions of RLDDM8. In RLDDM4, 
positive and negative learning rates are identical, η+ = η–, and in RLDDM6, τexp = 0. In such cases an 
estimation approach (i.e. examining the posterior distributions of the parameters) may be more 
informative than relying solely on categorical model comparison (Kruschke, 2015). The reason 
is that a parameter’s posterior distribution provides the best information regarding the value of 
a parameter, given the priors and the data, and thus allows for a quantification of the degree of 
evidence that e.g. learning rates differ, or that τexp is different from 0.

PARAMETER AND MODEL RECOVERY SIMULATIONS

Parameter recovery analyses were carried out across 10 simulated datasets. Results are provided 
in Supplemental Figure 1 for RLDDM8 and Supplemental Figure 2 for RLDDM4. All correlations 
between generating and estimated individual-subject parameters were ≥ .59 (see Supplemental 
Table 1) and group-level parameters recovered well (Supplemental Figures 1 and 2).

Model recovery analyses were restricted to the best fitting model (RLDDM8) and the two runner-up 
models (RLDDM4 and RLDDM6). Amonst these models, RLDDM8 exhibited the best model recovery 
performance (Supplemental Figure 3), such that in 77% of simulations from RLDDM8, this model 
also provided the best fit amongst all models from the model space.

POSTERIOR PREDICTIVE CHECKS

As a model comparison is always relative to a given set of candidate models, we next performed 
posterior predictive checks to examine the degree to which RLDDM8 accounted for key patterns 
in the data, in particular with respect to changes in accuracy and RT over the course of learning. 
For comparison, we included the DDM0, and the simplest learning model (RLDDM1), and overlayed 
mean accuracies and RTs per time bin of simulated and observed data (see methods section), 
separately for each group. Figure 3 (control group) and Figure 4 (gambling group) depict the 
observed and model-predicted accuracies and RTs per trial bin.

Table 2 Model comparison 
results, separately per group. 
We examined reinforcement 
learning drift diffusion models 
(RLDDMs) with single vs. dual 
learning rates (η) and fixed 
vs. modulated non-decision 
times (τ) and decision threshold 
(α), as well as a null model 
without learning (DDM0). Model 
comparison used the estimated 
log pointwise predictive density 
(-elpd)(Vehtari et al., 2017). We 
also report the 95% CI of the 
difference in -elpd between 
each model and the best-fitting 
model (-elpddiff).

MODEL η τ α CONTROLS GAMBLERS

-elpd -elpddiff RANK -elpd -elpddiff RANK

DDM0 – Fixed Fixed 800.2 215.0
[171.6, 258.4]

9 1115.9 107.6
[78.9, 136.3]

9

RLDDM1 1 Fixed Fixed 658.1 72.8
[48.6, 97.1]

8 1055.5 47.3
[27.3, 67.2]

8

RLDDM2 1 Fixed Power 634.3 49.0
[29.3, 80.7]

6 1021.4 13.1
[.4, 25.8]

4

RLDDM3 1 Power Fixed 644.0 58.8
[36.8, 97.1]

7 1027.1 18.8
[3.1, 34.4]

6

RLDDM4 1 Power Power 628.3 43.1
[24.1, 68.7

5 1010.3 2.0
[–9.1, 13.2]

2

RLDDM5 2 Fixed Fixed 615.0 29.7
[15.9, 43.5]

4 1049.0 40.7
[23.8 57.6]

7

RLDDM6 2 Fixed Power 591.4 6.1
[–.1, 12.3]

2 1019.3 11.1
[4.5, 17.6]

3

RLDDM7 2 Power Fixed 599.8 14.5
[4.4, 24.6]

3 1022.4 14.1
[3.4, 24.9]

5

RLDDM8 2 Power Power 585.3 0.0 1 1008.3 0.0 1
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DDM0 predicts constant accuracies and RTs over trials, and as can be seen in Figures 3a and 4a, 
cannot reproduce the observed learning-related changes. In contrast, RLDDMs predict learning-
related increases in accuracy and decreases in RTs over time. Notably, in the control group 
(Figure 3b, c), both RLDDM1 and RLDDM8 provide a reasonbly good account of both effects on 
the group level. In contrast, in the gambling disorder group (Figure 4b, c), RLDDM1 provided a 
poor account of group-level changes in RTs over time, suggesting that RL alone was insufficient to 
account for the RT reductions over time in the gambling group.

Individual-participant posterior predictive checks confirmed that RLDDM8 provided a good account 
of individual-participant RT distributions (Supplemental Figures 4 and 5) and RT changes over the 
course of learning in individual participants (Supplemental Figures 6 and 7).

Figure 3 Posterior predictive 
checks in the control group. 
Top row: observed RTs over 
time (black lines) and model 
predicted RTs (solid blue lines: 
means, dashed lines: +/– 95% 
percentiles). Bottom row shows 
observed accuracies over 
time (black lines) and model 
predicted accuracies (solid 
blue lines: means, dashed 
lines: +/– 95% percentiles). a) 
DDM0 without reinforcement 
learning. b) RLDDM1 with a 
single learning rate, fixed non-
decision time and fixed decision 
threshold. c) RLDDM8 with dual 
learning rates, modulated non-
decision time and modulated 
decision threshold.

Figure 4 Posterior predictive 
checks in the gambling disorder 
group. Top row: observed RTs 
over time (black lines) and 
model predicted RTs (solid red 
lines: means, dashed lines: 
+/– 95% percentiles). Bottom 
row shows observed accuracies 
over time (black lines) and 
model predicted accuracies 
(solid red lines: means, dashed 
lines: +/– 95% percentiles). a) 
DDM0 without reinforcement 
learning. b) RLDDM1 with a 
single learning rate, fixed non-
decision time and fixed decision 
threshold. c) RLDDM8 with dual 
learning rates, modulated non-
decision time and modulated 
decision threshold.
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GROUP DIFFERENCES IN MODEL PARAMETERS

Next, group differences in RLDDM8 parameters were examined in detail. Posterior distributions 
of parameter group means as well as group differences are shown in Figure 5 for each RLDDM 
parameter, and details are provided in Table 3. Three reliable group differences emerged, with 
posterior probabilities >96% (Table 3): First, αexp was reliably reduced in the gambling group 
compared to the control group (Figure 5b and Table 3, model-implied decision threshold changes 
over time for each group and individual are shown in Supplemental Figure 8). The gambling disorder 
group therefore showed a more rapid reduction in decision thresholds over time than the control 
group. Second, the offset of the non-decision-time, τ0, was reliably lower in the gambling group 
compared to the control group (Figure 5c and Table 3). Third, the drift rate value modulation, vcoeff, 
was reliably lower in the gambling group compared to the control group (Figure 5e and Table 3).

Figure 5 Posterior distributions 
for RLDDM8 parameters. Upper 
panels: posterior distributions 
of parameter group means 
for the control group (blue) 
and the gambling group (red). 
Lower panels: posterior group 
differences per parameter 
(control group – gambling 
disorder group). Solid (thin) 
horizontal lines in the lower 
panels denote 85% (95%) 
highest posterior density 
intervals.

Table 3 Group differences 
and within-group effects 
for all RLDDM8 parameters. 
Mdiff: mean posterior group 
difference. P(group diff. > 0): 
posterior probability that the 
group difference in a parameter 
is > 0. dBF (group difference): 
directional Bayes Factors 
comparing the evidence for 
a group difference > 0 to the 
evidence for a group difference 
< 0. Within group comparisons: 
P(effect): posterior probability 
for an effect (for αexp, τexp and 
vcoeff, the comparison is vs. 0). 
dBF: directional Bayes Factors 
comparing the evidence for 
a parameter value > 0 to the 
evidence for a parameter value 
< 0.

GROUP DIFFERENCES WITHIN-GROUP COMPARISONS 

Mdiff P (group 
diff. > 0)

dBF CONTROL GROUP GAMBLING GROUP

P (effect) dBF P (effect) dBF

α0 –.167 18.25% .29 –

αexp .061 96.39% 27.60 69.29% .43 99.98% .00024

τ0 .128 96.91% 27.09 –

τexp .002 52.05% 1.12 99.71% .003 96.10% .045

vcoeff 1.79 96.40% 25.79 >99.99% 15860 >99.99% 15828

η+ .147 62.44% 1.64 –

η– .239 63.09% 1.66 –
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For comparison, behavioral data were also fitted with a standard softmax choice rule (Eq. 3). Here, 
the inverse temperature parameter (β) was substantially reduced in the gambling group compared 
to the control group (see Supplemental Figure 10 and Supplemental Table 2). This is consistent 
with the effects observed for RLDDM8, as both a lower value coefficient of the drift rate and a lower 
decision threshold would translate to higher levels of decision noise (a lower β parameter) in the 
softmax model.

Table 4 Replication analyses for 
model-derived measures (main 
effects across groups): average 
Q-value across options, chosen 

– unchosen Q-value, and model-
derived prediction error. Small 
volume correction for multiple 
comparisons (SVC) used a 
single region of interest mask 
across two meta-analyses 
(Bartra et al., 2013; Clithero & 
Rangel, 2014) of reward value 
effects (see methods section).

CONTRAST/REGION COORDINATES PEAK T-VALUE p(FWE)SVC

Average Q-value

vmPFC –4 38 6 4.73 .002

Chosen-unchosen value

No significant effects in ROI

Reward prediction error

Left ventral striatum –10 6 –10 5.69 <.001

Right ventral striatum 12 10 –12 6.77 <.001

vmPFC –4 56 –4 6.26 <.001

Posterior Cingulate Cortex 0  –36 –36 4.49 .012

Figure 6 Parametric analyses of 
model-based average Q-values 
(GLM2) revealed a robust main 
effect across groups in the 
ventro-medial prefrontal cortex 
(a). Parameter estimates at the 
peak voxel from (a) are shown 
in b).

(Ā"Ā !
ĀȀ'#%&$

"/ %,#'%ĀĀ !/#).%
Ȁ*#(+ %&&%$- 

# ! ĀȀ 

"

Figure 7 Parametric analysis of 
model-based reward prediction 
error (GLM1) revealed a robust 
main effect across groups 
in bilateral ventral striatum 
(a). Parameter estimates 
at peak voxels in (a) were 
then extracted from GLM3 to 
illustrate effects of positive (+) 
vs. negative (–) prediction errors 
in each group in both left and 
right ventral striatum (b).ĀĀ#Ȁ!" 
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Table 5 Inclusion Bayes Factors 
(BFincl) from Bayesian repeated 
measures ANOVAs at ventral 
striatal peak voxels showing 
main effects of model-based 
prediction error (PE) across 
groups (see Table 4).

EFFECTS LEFT VENTRAL STRIATUM
[–10 6 –10]

RIGHT VENTRAL STRIATUM
[10 12 –12]

PE sign 1060.335 7059.337

Group 0.878 0.719

Group * PE Sign 1.966 1.759



36Wiehler and Peters  
Computational Psychiatry  
DOI: 10.5334/cpsy.104

FMRI RESULTS

In a first step, replication analyses for previously reported effects were conducted, focusing on 
model-based chosen – unchosen value, and model-based prediction error (based on GLM1 and 
GLM3) and model-based average Q-value (GLM2). We focused on a single ROI covering areas linked 
to reward valuation effects based on two meta-analyses (see methods section). This revealed 
significant main effects across groups for average Q-values in the ventromedial prefrontal cortex 
(Figure 6 and Table 4). A Bayesian two-sample t-test revealed moderate evidence in favour of the 
absence of a group effect (BF01 = 3.179).

There were significant effects of model-based prediction error in bilateral ventral striatum, 
ventro-medial prefrontal cortex and posterior cingulate cortex (Figure 7 and Table 4), whereas 
no significant effects were observed for chosen – unchosen Q-values in our ROI. Prediction error 
effects were first identified via parametric modulation in GLM1, and then visualized by extracting 
separate parameter estimates for positive vs. negative prediction errors from GLM3 (Figure 7b). 
Statistical analysis of group differences at peak voxels showing main effects of prediction error in 
GLM1 then used Bayesian repeated measures ANOVAs with the within-subjects factor prediction 
error sign (positive/negative) and the between-subjects factor group (gambling/control). In both 
left and right ventral striatum, this revealed decisive evidence for an effect of prediction error sign 
(Table 5), but only inconclusive evidence for group effects (BFincl < 1) and only anecdotal evidence 
for the presence of group x prediction error sign interactions (1 < BFincl < 3, see Table 5).

DISCUSSION
Here we comprehensively examined the computational underpinnings of reinforcement learning 
impairments in a gambling group (n = 23, n = 7 fulfilling one to three DSM 5 criteria for gambling 
disorder, n = 16 fulfilling four or more criteria) and a matched control group (n = 23), using a 
combination of computational modeling and functional magnetic resonance imaging (fMRI). 
Accuracy on the learning task was substantially reduced in the gambling group, whereas there 
was little credible evidence for group differences in response times (RTs). Computational modeling 
revealed that in both groups, extended reinforcement learning drift diffusion models (RLDDMs) 
in which both non-decision time and boundary separation (decision threshold) were modulated 
across trials according to a power function provided a superior account of the data (see below 
for discussion). The model with the best numerical fit (RLDDM8) showed good parameter and 
model recovery, and accurately reproduced the observed accuracy and response time (RTs) 
changes over the course of learning in both groups. Computational modeling revealed three major 
group differences: Compared to the control group, the gambling group exhibited shorter non-
decision times, a more rapid reduction of decision thresholds over the course of learning, and 
a reduced value modulation of the drift rate. Neuroimaging analyses replicated effects of value 
in ventromedial prefrontal cortex, and prediction error in ventral striatum. However, Bayesian 
analyses revealed that evidence for group differences in these effects was at most anecdotal.

Model comparison showed that, numerically, RLDDM8 (a model with dual learning rates, and 
modulated non-decision time and decision threshold according to power functions) exhibited the 
best fit in both groups. However, there was some overlap in the 95% confidence intervals of the 
-elpd difference between RLDDM8 and the second best models in both groups. The runner-up 
model also differed between groups (RLDDM6 for the control group, RLDDM4 for the gambling 
group), such that, overall, the model comparison was somewhat inconclusive. We nonetheless 
chose to focus subsequent analyses on the RLDDM8, for the following reasons. First, the runner-up 
models in both groups were nested versions of RLDDM8. In such cases, an estimation approach 
(rather a categorical model comparison) can be more informative (Kruschke, 2015), as it allows 
a quantification of the degree of evidence that nested parameters (such as αexp,τexp) are different 
from zero. Indeed, despite the inconclusive model comparison, τexp was reliably < 0 in both 
groups. Second, model recovery analyses revealed that recovery was in fact best for RLDDM8. 
Third, parameter recovery simulations confirmed that, despite its’ greater complexity, RLDDM8 
parameters could be reliably recovered (see below). The model ranking differences between 
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groups mostly recapitulate what can be observed from the analysis of the posterior distributions. 
For example, the top four models in the gambling group all allowed for a modulated boundary 
separation parameter. This contrasts with the control group, where models ranked third and forth 
included a fixed boundary separation, resonating with the results from the analysis of posterior 
distributions, which revealed that the decay of the decision threshold was more consistent in the 
gambling group compared to the control group (see below). Overall, -elpd scores were substantially 
lower in the control group compared to the gambling group. This is likely a consequence of the fact 
that accuracy was overall lower in the gambling group compared to the control group, such that 
the RL model provided a poorer account of the data – decisions were noisier with respect to the 
RL model in the gambling group. This account is also consistent with the control analyses using a 
standard softmax model (see Supplemental Figure 10 and Supplemental Table 3), which revealed 
increased decision noise (a lower inverse temperature parameter) in the gambling group.

We performed extensive checks to verify the performance of RLDDM8. First, we ran a series of 
parameter recovery simulations, which revealed that both subject-level and group-level parameters 
recovered well. Parameter recovery essentially determines the upper bound of reliability. It is 
therefore reassuring that estimated subject-level parameters showed a correlation between .59 
and .90 with the true generating parameters. Likewise, estimated posterior distributions of group-
level parameters generally contained the true generating parameters within their 95% highest 
posterior density intervals (Fontanesi, Gluth, et al., 2019). RLDDM8 also showed satisfactory 
model recovery performance, which was numerically better than both RLDDM4 and RLDDM6. 
Second, model performance was verified in a series of posterior predictive checks. In both groups, 
RLDDM8 reproduced both the increases in accuracy and the decreases in RTs over trials well. The 
requirement of including modulated decision thresholds and non-decision times was particularly 
evident in the gambling group, where a simpler model without modulated decision threshold 
(RLDDM1) failed to fully account for the reductions in RTs over trials. RLDDM8 also reproduced both 
individual-participant RT distributions as well as RT changes over trials in individual participants.

Analysis of model parameters then allowed us to examine group differences in computational 
processes underlying task performance. Non-decision times, reflecting aspects of the RT that 
are unrelated to the evidence accumulation process, showed a similar decay over time in both 
groups, but the non-decision time offset τ0 was substantially lower in the gambling group. In 
contrast, the decision threshold showed a substantially more rapid decay in the gambling vs. 
the control group (αexp was reliably more negative). That is, over the course of the experiment, 
individuals from the gambling group, more than controls, increasingly shifted their focus 
from accuracy to speed. These findings converge with previous observations of other forms 
of maladaptive decision-making and action selection in gambling disorder, such as increased 
motor impulsivity (Chowdhury et al., 2017), higher urgency/reduced premeditation (Kräplin et 
al., 2014) and higher levels of temporal discounting (MacKillop et al., 2011; Wiehler & Peters, 
2015). Attenuated deliberation during decision-making is also reminiscent of previous findings of 
impaired goal-directed control during RL in disordered gambling (Bruder et al., 2021; Wyckmans 
et al., 2019). Similar effects have been shown to contribute to gambling behavior in laboratory 
settings (Kim et al., 2022; Shao et al., 2013). However, further work is required to more directly 
link such processes to maladaptive gambling behavior as it occurs in real life settings. In addition 
to alterations in decision thresholds, performance deficits in the gambling group were linked to a 
substantial reduction in the modulation of the drift rate by Q-value differences. Taken together, 
our findings highlight the power and utility of computational analyses via RLDDMs (Miletić et al., 
2020): model-based decomposition of RT distributions revealed substantial group differences in 
component processes underlying reinforcement learning and action selection, despite the fact 
that overall RTs were similar between groups. Note that these group differences were also in part 
reflected in the group differences in model ranking amongst the runner-up models to RLDDM8 
(see above).

A previous preprint version of the present manuscript also reported group differences for the 
model with a single learning rate (RLDDM4). While this analysis revealed highly similar results for 
τ0 and αexp, the drift rate modulation parameter vcoeff was not reliably different in the two groups in 



38Wiehler and Peters  
Computational Psychiatry  
DOI: 10.5334/cpsy.104

that model, contrasting with the results for RLDDM8. This discrepancy is likely due to interactions 
between learning rates and drift rate modulation. The mean difference in learning rates was more 
variable in the gambling group (Supplemental Figure 9), and generally, mean posterior estimates 
of learning rate standard deviations were higher in the gambling group compared to the control 
group (gambling group: MSD,η+ = 2.079, MSD,η– = 1.395; control group: MSD,η+ = 1.452, MSD,η– = .8185, all 
values reported in units of learning rates in standard normal space). In some individuals from the 
gambling group, these effects may therefore have led to a misestimation of Q-values in RLDDM4, 
where learning rates are forced to be the identical regardless of feedback type. The similar vcoeff 
parameters in the two groups in RLDDM4 may then be due to the inaccurate Q-value estimates 
in some in participants from the gambling group. At the same time, lower learning rates were 
observed in the gambling group in RLDDM4, but these differences were not reliable in RLDDM8 
(although, numerically mean learning rates were also lower in the gambling group in RLDDM8). 
This difference could result from increased estimation noise in RLDDM8, where effects are split 
amongst two parameters.

These results might provide some insights into potential neurocomputational mechanisms 
underlying the development and maintenance of gambling behavior. In animal models, exposure 
to uncertainty gives rise to behavioral and neural effects similar to those observed during repeated 
exposure to drugs of abuse (Anselme et al., 2013; M. J. F. Robinson et al., 2014, 2015; Zack et 
al., 2014), conceptually linking behavioral addictions (M. J. F. Robinson et al., 2016) and theories 
of substance-use-disorders such as incentive sensitization theory (T. E. Robinson & Berridge, 
1993). In structured environments, overall experienced uncertainty is inversely related to learning 
performance, and midbrain dopamine neurons fire maximally during uncertain reward prediction 
(Fiorillo et al., 2003). Likewise, human subcortical dopaminergic structures encode risk (Preuschoff 
et al., 2006), and striatal dopamine release in gambling disorder is highest under conditions of 
maximum uncertainty (Linnet et al., 2012). There is also some evidence that gambling disorder 
might be linked to an overall increase in dopamine availability in the striatum (van Holst et al., 
2018). Therefore, one could speculate that an increase in overall uncertainty and concomitant 
dopamine release (Fiorillo et al., 2003), combined with a potentially general increase in dopamine 
levels in the gambling group (van Holst et al., 2018), might underlie the observed effects. In line with 
this interpretation, decision threholds were reduced by pharmacologically increasing dopamine 
levels using the same task reported here (Chakroun et al., 2023). Likewise, the dopamine precursor 
tyrosine reduced decision thresholds across two different decision-making tasks (Mathar et al., 
2022).

In previous work (Wiehler et al., 2021), we examined exploration during reinforcement learning 
using a restless four-armed bandit task (Daw et al., 2006) in the same group of participants. This 
previous task differs from the present reinforcement learning task in a number of important respects: 
First, average payoffs of each bandit changed continuously according to gaussian random walk 
processes, whereas in the present task, reinforcement rates were stable. Second, reward feedback 
consisted of points in the range of 0–100, whereas in the present task, participants received 
probabilistic binary (win / no win) feedback. Third, 300 trials in total were performed in the bandit 
task, whereas the present task was substantially shorter. Finally, in our previous task, a stricter 
response deadline was included, which precluded us from comprehensively analyzing RTs and 
sequential sampling models. Interestingly, however, in the four-armed bandit task, performance 
was similar between the gambling and the control group (Wiehler et al., 2021). Yet, computational 
modeling revealed that the gambling group relied less on a “directed exploration” strategy 
(Wiehler et al., 2021) that favours selection of uncertain options for information gain (Wilson et al., 
2021). It is nonetheless striking that in the arguably more complex task in a volatile environment, 
impairments in the gambling group were more subtle, whereas in the present stationary task, 
group differences in overall accuracy were substantial. What could account for these relative 
differences in performance? One possibility is that the required degree of temporal integration 
plays a role. In the restless bandit task, reward feedback on any given trial provides (almost) 
complete information on the current value of a chosen bandit (“almost” because outcomes 
are corrupted by gaussian observation noise). In contrast, in order to accurately estimate the 
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underlying reinforcement rates in the present task, binary outcomes need to be integrated across 
consecutive trials, which might contribute to the impairments in the gambling group. However, 
working memory deficits, which might contribute to impairments in feedback integration across 
trials, are not typical neuropsychological characteristics of gambling disorder (Kapsomenakis et 
al., 2018; Ledgerwood et al., 2012). A second possibility is that group differences might be more 
evident in the shorter RL task reported here, because group differences might be restricted to 
earlier trials. This was indeed the case for RTs, whereas accuracy was lower in the gambling group 
across all trials (compare Figures 3 and 4). A third possibility is that the two tasks may have been 
differentially affected by task order and/or fatigue effects. All participants completed the four-
armed bandit task prior to the RL task reported here, and it thus cannot be ruled out that the 
gambling group may have been more affected by fatigue than the control group.

FMRI analyses across groups then confirmed 1) a positive correlation between activity in vmPFC 
and the average Q-value across options, which is in line with a wealth of previous imaging findings 
(Bartra et al., 2013; Chib et al., 2009; Clithero & Rangel, 2014; Plassmann et al., 2007), including 
results from the same task (Chakroun et al., 2023). Likewise, reward prediction error effects were 
replicated in bilateral ventral striatum and ventro-medial prefrontal cortex. However, for both 
effects, Bayesian analyses revealed at best anecdotal evidence for group differences. Alterations 
in regions of the reward system, in particular ventral striatum and ventro-medial prefrontal cortex, 
have frequently been reported in gambling disorder, as outlined in a number of reviews (Clark et 
al., 2019; Fauth-Bühler et al., 2017; Potenza, 2013). However, the directionality of these changes 
has long puzzled researchers, as both increases and reductions have been reported (Balodis et 
al., 2012; Clark et al., 2019; Leyton & Vezina, 2012, 2013; van Holst, Veltman, van den Brink, et al., 
2012), e.g. depending on task phases (Clark et al., 2019; van Holst, Veltman, Büchel, et al., 2012), 
contextual factors (Leyton & Vezina, 2013; Miedl et al., 2014) or reinforcer categories (Miedl et al., 
2012; Sescousse et al., 2013). Although, numerically, the contrast between positive and negative 
prediction errors in bilateral striatum appeared to be somewhat more pronounced in the gambling 
group, which would be consistent with some earlier observations (Clark et al., 2019), evidence 
was only anecdotal (1 < BFincl < 3). While the replication of core previous results in vmPFC and VS 
increases the confidence in the fMRI results, several reasons may underlie the lack of reliable group 
differences. First, we focused our analysis on two core regions previously implicated in RL and 
disordered gambling (Clark et al., 2019), and it is therefore possible that group differences in other 
circuits were overlooked. Second, one study with a substantially larger sample size only observed 
effects in gambling disorder when depressive symptoms were also taken into account (Fauth-
Bühler et al., 2014), suggesting that fMRI effects might in some cases be restricted to specific 
gambling disorder subgroups. Finally, more general reliability issues with fMRI contrasts (Fröhner 
et al., 2019) might contribute to the overall heterogeneity in the field.

A number of limitations of the present study need to be acknowledged. First, the sample size was 
relatively small, and findings thus require replication in larger samples. However, modeling used 
hierarchical Bayesian estimation procedures that are suitable for cases of limited observations, 
and parameter and model recovery checks confirmed this. Second, as is often the case in studies 
on disordered gambling, due to the higher prevalence of problem gambling in males (Hing et 
al., 2016), the gambling group only includeed male participants, limiting the generalizability 
of our results. Third, in contrast to the original study according to which the task was set up 
(Pessiglione et al., 2006), we only included a gain condition, and no loss condition. The degree 
to which the reported impairments in reinforcement learning in the gambling group extend to 
tasks with an explicit loss condition therefore remain to be examined in future studies. Fourth, a 
classification of individuals suffering from disordered gambling into different subtypes according 
to clinical characteristics, disorder trajectories and/or gambling motivations have been proposed 
(Blaszczynski & Nower, 2002; Milosevic & Ledgerwood, 2010). These factors potentially reflect 
important individual differences in the context of disordered gambling, and the same holds for 
the preferred gambling format of individuals. However, given the small sample size, examination 
of such subtypes as well as effects of preferred gambling format was not feasible. Finally, 
comborbidities are potentially important confounds in studies on disordered gambling. Although 
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groups were matched on alcohol use and smoking in the present study, depression symptoms 
were higher in the gambling group, which is a common finding (Dowling et al., 2017). Depression is 
known to be associated with RL impairments (Mukherjee et al., 2023; Pike & Robinson, 2022), and 
depression symptoms might thus confound some of the observed group differences. However, 
the most consistent finding in depression are alterations in learning rates (Pike & Robinson, 2022), 
contrasting with the primary group differences in terms of decision threshold modulation and 
non-decision times that we report here. Nonetheless, future studies might benefit from a more 
comprehensive assessment of comorbidities than done here.

Taken together, we provide a comprehensive model-based analysis of computational mechanisms 
underlying impaired reinforcement learning performance in gambling disorder. Model-based 
decomposition of RTs revealed that, although overall RTs were similar between groups, the 
underlying processes differed considerably. In particular, the gambling group showed shorter 
non-decision times, an increasing focus on speed vs. accuracy over the course of the experiment 
(reduction of decision thresholds over time) and a reduced impact of Q-value differences on the 
drift rate. These findings highlight that reinforcement learning impairments in gambling disorder 
are likely attributable to alterations in multiple component processes.
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	0
	0
	exp
	exp

	Therefore, the model space included the null model (DDM) and eight variants of the RLDDM, which differed according to learning rates (single vs. dual), decision thresholds (fixed vs. power function) and non-decision times (fixed vs. power function).
	0

	HIERARCHICAL BAYESIAN MODELS
	Models were fit to all trials from all participants, separate for each group, using a hierarchical Bayesian modeling approach with group-level Gaussian distributions for all parameters. Posterior distributions were estimated using Markov Chain Monte Carlo as implemented in the JAGS software package () (Version 4.3) using the Wiener module for JAGS () distribution, in combination with Matlab (The MathWorks) and the matjags interface (). For group-level means and standard deviations, we defined uniform priors
	Plummer, 2003
	Wabersich 
	& Vandekerckhove, 2014
	https://github.com/msteyvers/matjags
	Table 1

	For each model and group, we ran two chains with a burn-in period of 50k samples and thinning factor of 2. 10k additional samples were then retained for further analysis. Chain convergence was assessed by examining the Gelman-Rubinstein convergence diagnostic , and values of  were considered as acceptable for all group-level and individual-subject parameters. Relative model comparison was performed via the Widely Applicable Information Criterion (WAIC) and the estimated log pointwise predictive density (elp
	ˆR
	11.01ˆR≤≤
	Vehtari et al., 2017

	PARAMETER RECOVERY SIMULATIONS
	Parameter recovery simulations were conducted to ensure that known parameters underlying the data-generating process could be recovered using our modeling procedures. For this purpose, we simulated 10k full data sets from the posterior distribution of the best-fitting model. Ten of these simulated data sets were randomly selected, and re-fit with the same modeling procedure. Parameter recovery was then assessed in two ways. For subject-level parameters, we examined the correlation between generating and est
	MODEL RECOVERY SIMULATIONS
	To ensure that the true data-generating model could be identified using our modeling procedures, model recovery analyses were conducted, focusing on the three best-fitting models (RLDDM 4, RLDDM6 and RLDDM8). Twenty full datasets were simulated from each of the three models’ posterior distributions, and re-fit with all nine models from the model space. The percentage of simulations in which the true data-generating model was recovered was then taken as a measure of model recovery.
	POSTERIOR PREDICTIVE CHECKS
	Posterior predictive checks were performed to ensure that the best-fitting model captured key aspects of the data, again using data sets simulated from the model’s posterior distributions. For each simulated data set, we then computed for each group mean RTs and accuracies for bins of ten trials (averaging across 1k randomly selected simulated data sets), and compared these model-predicted values to the observed data per group. Individual-participant posterior pedictive checks were carried out by overlaying
	ANALYSES OF POSTERIOR DISTRIBUTIONS
	Posterior distributions were analyzed in the following ways. Mean group differences along with 95% highest density intervals and posterior probabilities for group differences > 0 are reported, where probabilities exceeding 95% are taken as evidence for an effect. For completeness, we also report directed Bayes Factors (dBFs) that quantify the relative evidence in favour of a group difference < 0 vs. a group difference > 0.
	FMRI DATA ACQUISITION
	MRI data were collected on a Siemens Trio 3T system using a 32-channel head coil. Participants performed a single run of 60 trials in total (following a short break, after completion of our previously reported task ()). Each volume consisted of 40 slices (2 × 2 × 2 mm in-plane resolution and 1-mm gap, repetition time = 2.47s, echo time 26 ms). We tilted volumes by 30° from the anterior and posterior commissures connection line to reduce signal drop out in the ventromedial prefrontal cortex and medial orbito
	Wiehler et al., 2021
	Deichmann et al., 2003

	FMRI PREPROCESSING
	All preprocessing and statistical analyses of the imaging data was performed using SPM12 (Wellcome Department of Cognitive Neurology, London, United Kingdom). As in our previous study in this sample (), volumes were first realigned and unwarped to account for head movement and distortion during scanning. Second, slice time correction to the onset of the middle slice was performed to account for the shifted acquisition time of slices within a volume. Third, structural images were co-registered to the functio
	Wiehler et al., 2021

	FMRI STATISTICAL ANALYSIS
	Error trials were defined as trials were no response was made, or trials that were excluded from the computational modeling during RT-based trial filtering (see above, recall that for each participant, the fastest 5% of trials were excluded). Following earlier work (), three first-level general linear models (GLMs) were examined. GLM1 used the following regressors:
	Chakroun et al., 2023

	1) onset of the decision option presentation
	2) onset of the decision option presentation modulated by chosen – unchosen Q-value
	3) onset of the decision option presentation modulated by (chosen – unchosen Q-value)
	2

	4) onset of the feedback presentation
	5) onset of the feedback presentation modulated by model-based prediction error
	6) onset of the decision option presentation for error trials
	7) onset of the feedback presentation for error trials.
	In GLM2, chosen – unchosen value was replaced with the average Q-value across options.
	GLM3 used the following regressors:
	1) onset of the decision option presentation
	2) onset of the decision option presentation modulated by chosen – unchosen value
	3) onset of the decision option presentation modulated by (chosen – unchosen value)
	2

	4) onset of the feedback presentation for positive prediction errors
	5) onset of the feedback presentation for negative prediction errors
	6) onset of the feedback presentation for error trials.
	Following earlier work using this task (; ), Q-values and prediction errors were computed using the posterior group-mean learning rates from the best-fitting final hierarchical Bayesian model (RLDDM8). Parametric modulators were z-scored within-subject prior to entering them into the first level model (). Single-subject contrast estimates were then taken to a second-level random effects analysis using the two-sample t-test model as implemented in SPM12. At the second level, the following z-scored covariates
	Chakroun et al., 2023
	Pessiglione et al., 2006
	Lebreton et al., 2019
	Beck et al., 1996
	Heatherton et al., 1991
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	All contrasts are displayed at p < .001 (uncorrected) with k >= 10 voxels, and correction for multiple comparisons using the family-wise error rate (FWE) followed the same approach as in our earlier work () and used a single region-of-interest (ROI) mask provided by the Rangel Lab () that is based on two meta-analysis of reward valuation effects (; ). This mask covers core areas involved in reward processing, including bilateral ventral striatum, ventromedial prefrontal cortex, anterior cingulate cortex and
	Chakroun et al., 2023
	https://www.rnl.caltech.edu/resources/index.html
	Bartra et al., 2013
	Clithero & Rangel, 2014

	RESULTS
	Behavioral data analysis and computational modeling proceeded in the following steps. We first analyzed model-free performance measures. Next, we carried out a detailed model comparison of a set of candidate reinforcement learning drift diffusion models (RLDDMs) and identified the best-fitting model. We then ran parameter and model recovery analyses to ascertain that the true data-generating parameters could be recovered, and ran posterior predictive checks to ensure that key patterns in the data could be r
	MODEL-AGNOSTIC ANALYSIS
	RT distributions per group are shown in  and , with choices of the suboptimal option coded as negative RTs. While control group participants selected the optimal stimulus on around 80% of trials (), participants from the gambling group only made around 68% correct choices. A Bayesian Wilcoxon Rank sum test confirmed moderate evidence for group differences in accuracy (BF10 = 6.67, ) and total reward obtained (BF10 = 3.94, ). For median RTs, in contrast, a Bayesian Wilcoxon Rank Sum test revealed anecdotal e
	Figure 2a
	2b
	Figure 2c
	Figure 2c
	Figure 2d
	Figure 2e

	MODEL COMPARISON
	We next compared a range of computational models (see methods section). As a reference, we first fit a null model (DDM) without a learning component. Next, a set of reinforcement learning DDMs (RLDDMs) was examined that all included a linear mapping from Q-value differences to trial-wise drift rates (; ; ) (see Eq. 5). This modeling scheme incorporates the intuition that successful learning should decrease RTs and increase accuracies, and that accuracy should be higher and RTs shorter when making easier cho
	0
	Chakroun et al., 2023
	Miletić et al., 2020
	Pedersen et al., 2017
	Table 2

	Model comparison was performed using the estimated log pointwise predictive density (-elpd) () (). In both groups, RLDDM8 exhibited the lowest -elpd value. However, the 95% confidence intervals of the -elpd difference between the best model and the second-best models (RLDDM6 in the control group and RLDDM4 in the gambling group) overlapped with zero, indicating that the evidence in favour of RLDDM8 was overall not decisive.
	Vehtari et al., 2017
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	Despite this inconclusive model comparison, we focused all remaining analyses on RLDDM8, for the following reasons. First, in the control group, the overlap in -elpd between RLDDM6 and 8 was numerically very small. Second, model recovery was substantially better for RLDDM8 than RLDDM4 and RLDDM6 (see below). Third, RLDDM4 and 6 are nested versions of RLDDM8. In RLDDM4, positive and negative learning rates are identical, η = η, and in RLDDM6, τ = 0. In such cases an estimation approach (i.e. examining the po
	+
	–
	exp
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	PARAMETER AND MODEL RECOVERY SIMULATIONS
	Parameter recovery analyses were carried out across 10 simulated datasets. Results are provided in Supplemental Figure 1 for RLDDM8 and Supplemental Figure 2 for RLDDM4. All correlations between generating and estimated individual-subject parameters were ≥ .59 (see Supplemental Table 1) and group-level parameters recovered well (Supplemental Figures 1 and 2).
	Model recovery analyses were restricted to the best fitting model (RLDDM8) and the two runner-up models (RLDDM4 and RLDDM6). Amonst these models, RLDDM8 exhibited the best model recovery performance (Supplemental Figure 3), such that in 77% of simulations from RLDDM8, this model also provided the best fit amongst all models from the model space.
	POSTERIOR PREDICTIVE CHECKS
	As a model comparison is always relative to a given set of candidate models, we next performed posterior predictive checks to examine the degree to which RLDDM8 accounted for key patterns in the data, in particular with respect to changes in accuracy and RT over the course of learning. For comparison, we included the DDM, and the simplest learning model (RLDDM1), and overlayed mean accuracies and RTs per time bin of simulated and observed data (see methods section), separately for each group.  (control grou
	0
	Figure 3
	Figure 4

	DDM predicts constant accuracies and RTs over trials, and as can be seen in  and , cannot reproduce the observed learning-related changes. In contrast, RLDDMs predict learning-related increases in accuracy and decreases in RTs over time. Notably, in the control group (, ), both RLDDM1 and RLDDM8 provide a reasonbly good account of both effects on the group level. In contrast, in the gambling disorder group (, ), RLDDM1 provided a poor account of group-level changes in RTs over time, suggesting that RL alone
	0
	Figures 3a
	4a
	Figure 3b
	c
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	Individual-participant posterior predictive checks confirmed that RLDDM8 provided a good account of individual-participant RT distributions (Supplemental Figures 4 and 5) and RT changes over the course of learning in individual participants (Supplemental Figures 6 and 7).
	GROUP DIFFERENCES IN MODEL PARAMETERS
	Next, group differences in RLDDM8 parameters were examined in detail. Posterior distributions of parameter group means as well as group differences are shown in  for each RLDDM parameter, and details are provided in . Three reliable group differences emerged, with posterior probabilities >96% (): First, α was reliably reduced in the gambling group compared to the control group ( and , model-implied decision threshold changes over time for each group and individual are shown in Supplemental Figure 8). The ga
	Figure 5
	Table 3
	Table 3
	exp
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	Table 3
	0
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	Figure 5e
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	For comparison, behavioral data were also fitted with a standard softmax choice rule (Eq. 3). Here, the inverse temperature parameter (β) was substantially reduced in the gambling group compared to the control group (see Supplemental Figure 10 and Supplemental Table 2). This is consistent with the effects observed for RLDDM8, as both a lower value coefficient of the drift rate and a lower decision threshold would translate to higher levels of decision noise (a lower β parameter) in the softmax model.
	FMRI RESULTS
	In a first step, replication analyses for previously reported effects were conducted, focusing on model-based chosen – unchosen value, and model-based prediction error (based on GLM1 and GLM3) and model-based average Q-value (GLM2). We focused on a single ROI covering areas linked to reward valuation effects based on two meta-analyses (see methods section). This revealed significant main effects across groups for average Q-values in the ventromedial prefrontal cortex ( and ). A Bayesian two-sample t-test re
	Figure 6
	Table 4
	01

	There were significant effects of model-based prediction error in bilateral ventral striatum, ventro-medial prefrontal cortex and posterior cingulate cortex ( and ), whereas no significant effects were observed for chosen – unchosen Q-values in our ROI. Prediction error effects were first identified via parametric modulation in GLM1, and then visualized by extracting separate parameter estimates for positive vs. negative prediction errors from GLM3 (). Statistical analysis of group differences at peak voxel
	Figure 7
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	DISCUSSION
	Here we comprehensively examined the computational underpinnings of reinforcement learning impairments in a gambling group (n = 23, n = 7 fulfilling one to three DSM 5 criteria for gambling disorder, n = 16 fulfilling four or more criteria) and a matched control group (n = 23), using a combination of computational modeling and functional magnetic resonance imaging (fMRI). Accuracy on the learning task was substantially reduced in the gambling group, whereas there was little credible evidence for group diffe
	Model comparison showed that, numerically, RLDDM8 (a model with dual learning rates, and modulated non-decision time and decision threshold according to power functions) exhibited the best fit in both groups. However, there was some overlap in the 95% confidence intervals of the -elpd difference between RLDDM8 and the second best models in both groups. The runner-up model also differed between groups (RLDDM6 for the control group, RLDDM4 for the gambling group), such that, overall, the model comparison was 
	Kruschke, 2015
	exp
	exp
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	We performed extensive checks to verify the performance of RLDDM8. First, we ran a series of parameter recovery simulations, which revealed that both subject-level and group-level parameters recovered well. Parameter recovery essentially determines the upper bound of reliability. It is therefore reassuring that estimated subject-level parameters showed a correlation between .59 and .90 with the true generating parameters. Likewise, estimated posterior distributions of group-level parameters generally contai
	Fontanesi, Gluth, et al., 2019

	Analysis of model parameters then allowed us to examine group differences in computational processes underlying task performance. Non-decision times, reflecting aspects of the RT that are unrelated to the evidence accumulation process, showed a similar decay over time in both groups, but the non-decision time offset τ was substantially lower in the gambling group. In contrast, the decision threshold showed a substantially more rapid decay in the gambling vs. the control group (α was reliably more negative).
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	A previous preprint version of the present manuscript also reported group differences for the model with a single learning rate (RLDDM4). While this analysis revealed highly similar results for τ and α, the drift rate modulation parameter v was not reliably different in the two groups in that model, contrasting with the results for RLDDM8. This discrepancy is likely due to interactions between learning rates and drift rate modulation. The mean difference in learning rates was more variable in the gambling g
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	These results might provide some insights into potential neurocomputational mechanisms underlying the development and maintenance of gambling behavior. In animal models, exposure to uncertainty gives rise to behavioral and neural effects similar to those observed during repeated exposure to drugs of abuse (; M. J. F. , ; ), conceptually linking behavioral addictions () and theories of substance-use-disorders such as incentive sensitization theory (). In structured environments, overall experienced uncertain
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	In previous work (), we examined exploration during reinforcement learning using a restless four-armed bandit task () in the same group of participants. This previous task differs from the present reinforcement learning task in a number of important respects: First, average payoffs of each bandit changed continuously according to gaussian random walk processes, whereas in the present task, reinforcement rates were stable. Second, reward feedback consisted of points in the range of 0–100, whereas in the pres
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	FMRI analyses across groups then confirmed 1) a positive correlation between activity in vmPFC and the average Q-value across options, which is in line with a wealth of previous imaging findings (; ; ; ), including results from the same task (). Likewise, reward prediction error effects were replicated in bilateral ventral striatum and ventro-medial prefrontal cortex. However, for both effects, Bayesian analyses revealed at best anecdotal evidence for group differences. Alterations in regions of the reward 
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	A number of limitations of the present study need to be acknowledged. First, the sample size was relatively small, and findings thus require replication in larger samples. However, modeling used hierarchical Bayesian estimation procedures that are suitable for cases of limited observations, and parameter and model recovery checks confirmed this. Second, as is often the case in studies on disordered gambling, due to the higher prevalence of problem gambling in males (), the gambling group only includeed male
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	Taken together, we provide a comprehensive model-based analysis of computational mechanisms underlying impaired reinforcement learning performance in gambling disorder. Model-based decomposition of RTs revealed that, although overall RTs were similar between groups, the underlying processes differed considerably. In particular, the gambling group showed shorter non-decision times, an increasing focus on speed vs. accuracy over the course of the experiment (reduction of decision thresholds over time) and a r
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	Gambling disorder is associated with deficits in reward-based learning, but the underlying computational mechanisms are still poorly understood. Here, we examined this issue using a stationary reinforcement learning task in combination with computational modeling and functional resonance imaging (fMRI) in individuals that regular participate in gambling (n = 23, seven fulfilled one to three DSM 5 criteria for gambling disorder, sixteen fulfilled four or more) and matched controls (n = 23). As predicted, the
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	Figure 2 Response time distributions (RT, in seconds) in the control group (a, blue) and the gambling disorder group (b, red) with choices of the suboptimal options coded as negative RTs. c: Accuracy per group (chance level is 0.5). d: Total rewards earned per group. e: Median RTs per group.
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	Table 2 Model comparison results, separately per group. We examined reinforcement learning drift diffusion models (RLDDMs) with single vs. dual learning rates (η) and fixed vs. modulated non-decision times (τ) and decision threshold (α), as well as a null model without learning (DDM). Model comparison used the estimated log pointwise predictive density (-elpd)(). We also report the 95% CI of the difference in -elpd between each model and the best-fitting model (-elpd).
	Table 2 Model comparison results, separately per group. We examined reinforcement learning drift diffusion models (RLDDMs) with single vs. dual learning rates (η) and fixed vs. modulated non-decision times (τ) and decision threshold (α), as well as a null model without learning (DDM). Model comparison used the estimated log pointwise predictive density (-elpd)(). We also report the 95% CI of the difference in -elpd between each model and the best-fitting model (-elpd).
	0
	Vehtari et al., 2017
	diff


	Figure
	Figure 3 Posterior predictive checks in the control group. Top row: observed RTs over time (black lines) and model predicted RTs (solid blue lines: means, dashed lines: +/– 95% percentiles). Bottom row shows observed accuracies over time (black lines) and model predicted accuracies (solid blue lines: means, dashed lines: +/– 95% percentiles). a) DDM without reinforcement learning. b) RLDDM1 with a single learning rate, fixed non-decision time and fixed decision threshold. c) RLDDM8 with dual learning rates,
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	Figure 4 Posterior predictive checks in the gambling disorder group. Top row: observed RTs over time (black lines) and model predicted RTs (solid red lines: means, dashed lines: +/– 95% percentiles). Bottom row shows observed accuracies over time (black lines) and model predicted accuracies (solid red lines: means, dashed lines: +/– 95% percentiles). a) DDM without reinforcement learning. b) RLDDM1 with a single learning rate, fixed non-decision time and fixed decision threshold. c) RLDDM8 with dual learnin
	Figure 4 Posterior predictive checks in the gambling disorder group. Top row: observed RTs over time (black lines) and model predicted RTs (solid red lines: means, dashed lines: +/– 95% percentiles). Bottom row shows observed accuracies over time (black lines) and model predicted accuracies (solid red lines: means, dashed lines: +/– 95% percentiles). a) DDM without reinforcement learning. b) RLDDM1 with a single learning rate, fixed non-decision time and fixed decision threshold. c) RLDDM8 with dual learnin
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	Figure
	Figure 5 Posterior distributions for RLDDM8 parameters. Upper panels: posterior distributions of parameter group means for the control group (blue) and the gambling group (red). Lower panels: posterior group differences per parameter (control group – gambling disorder group). Solid (thin) horizontal lines in the lower panels denote 85% (95%) highest posterior density intervals.
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	Table 4 Replication analyses for model-derived measures (main effects across groups): average Q-value across options, chosen – unchosen Q-value, and model-derived prediction error. Small volume correction for multiple comparisons (SVC) used a single region of interest mask across two meta-analyses (; ) of reward value effects (see methods section).
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	Figure 6 Parametric analyses of model-based average Q-values (GLM2) revealed a robust main effect across groups in the ventro-medial prefrontal cortex (a). Parameter estimates at the peak voxel from (a) are shown in b).
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